Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Sci Rep ; 10(1): 14341, 2020 08 31.
Article in English | MEDLINE | ID: mdl-32868796

ABSTRACT

Temperature is an important factor for the cambial growth in temperate trees. We investigated the way daily temperatures patterns (maximum, average and minimum) from late winter to early spring affected the timing of cambial reactivation and xylem differentiation in stems of the conifer Chamaecyparis pisifera. When the daily temperatures started to increase earlier from late winter to early spring, cambial reactivation occurred earlier. Cambium became active when it achieves the desired accumulated temperature above the threshold (cambial reactivation index; CRI) of 13 °C in 11 days in 2013 whereas 18 days in 2014. This difference in duration required for achieving accumulated temperature can be explained with the variations in the daily temperature patterns in 2013 and 2014. Our formula for calculation of CRI predicted the cambial reactivation in 2015. A hypothetical increase of 1-4 °C to the actual daily maximum temperatures of 2013 and 2014 shifted the timing of cambial reactivation and had different effects on cambial reactivation in the two consecutive years because of variations in the actual daily temperatures patterns. Thus, the specific annual pattern of accumulation of temperature from late winter to early spring is a critical factor in determining the timing of cambial reactivation in trees.


Subject(s)
Chamaecyparis/physiology , Plant Stems/physiology , Seasons , Temperature
2.
Am J Bot ; 106(6): 760-771, 2019 06.
Article in English | MEDLINE | ID: mdl-31157413

ABSTRACT

PREMISE: Cambial activity in some tropical trees varies intra-annually, with the formation of xylem rings. Identification of the climatic factors that regulate cambial activity is important for understanding the growth of such species. We analyzed the relationship between climatic factors and cambial activity in four tropical hardwoods, Acacia mangium, Tectona grandis, Eucalyptus urophylla, and Neolamarckia cadamba in Yogyakarta, Java Island, Indonesia, which has a rainy season (November-June) and a dry season (July-October). METHODS: Small blocks containing phloem, cambium, and xylem were collected from main stems in January 2014, October 2015 and October 2016, and examined with light microscopy for cambial cell division, fusiform cambial cells, and expanding xylem cells as evidence of cambial activity. RESULTS: During the rainy season, when precipitation was high, cambium was active. By contrast, during the dry season in 2015, when there was no precipitation, cambium was dormant. However, in October 2016, during the so-called dry season, cambium was active, cell division was conspicuous, and a new xylem ring formation was initiated. The difference in cambial activity appeared to be related to an unusual pattern of precipitation during the typically dry months, from July to October, in 2016. CONCLUSIONS: Our results indicate that low or absent precipitation for 3 to 4 months induces cessation of cambial activity and temporal periodicity of wood formation in the four species studied. By contrast, in the event of continuing precipitation, cambial activity in the same trees may continue throughout the year. The frequency pattern of precipitation appears to be an important determinant of wood formation in tropical trees.


Subject(s)
Cambium/anatomy & histology , Cambium/physiology , Rain , Trees/anatomy & histology , Trees/physiology , Acacia/anatomy & histology , Acacia/growth & development , Acacia/physiology , Cambium/growth & development , Cell Division , Eucalyptus/anatomy & histology , Eucalyptus/growth & development , Eucalyptus/physiology , Forestry , Indonesia , Lamiaceae/anatomy & histology , Lamiaceae/growth & development , Lamiaceae/physiology , Rubiaceae/anatomy & histology , Rubiaceae/growth & development , Rubiaceae/physiology , Seasons , Species Specificity , Trees/growth & development
3.
Ann Bot ; 122(1): 87-94, 2018 06 28.
Article in English | MEDLINE | ID: mdl-29726920

ABSTRACT

Background and Aims: In response to a gravitational stimulus, angiosperm trees generally form tension wood on the upper sides of leaning stems in order to reorientate the stems in the vertical direction. It is unclear whether the angle of inclination from the vertical affects tension wood formation. This study was designed to investigate negative gravitropism, tension wood formation and growth eccentricity in Acacia mangium seedlings inclined at different angles. Methods: Uniform seedlings of A. mangium were artificially inclined at 30°, 45°, 60° and 90° from the vertical and harvested, with non-inclined controls, 3 months later. We analysed the effects of the angle of inclination on the stem recovery angle, the anatomical features of tension wood and radial growth. Key Results: Smaller inclination angles were associated with earlier stem recovery while stems subjected to greater inclination returned to the vertical direction after a longer delay. However, in terms of the speed of negative gravitopism towards the vertical, stems subjected to greater inclination moved more rapidly toward the vertical. There was no significant difference in terms of growth eccentricity among seedlings inclined at different angles. The 30°-inclined seedlings formed the narrowest region of tension wood but there were no significant differences among seedlings inclined at 45°, 60° and 90°. The 90°-inclined seedlings formed thicker gelatinous layers than those in 30°-, 45°- and 60°-inclined seedlings. Conclusion: Our results suggest that the angle of inclination of the stem influences negative gravitropism, the width of the tension wood region and the thickness of gelatinous layers. Larger amounts of gelatinous fibres and thicker gelatinous layers might generate the higher tensile stress required for the higher speed of stem-recovery movement in A. mangium seedlings.


Subject(s)
Acacia/physiology , Gravitropism , Acacia/anatomy & histology , Acacia/growth & development , Gravitation , Seedlings/anatomy & histology , Seedlings/growth & development , Seedlings/physiology , Wood/anatomy & histology , Wood/growth & development , Wood/physiology
4.
Ann Bot ; 117(3): 465-77, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26703452

ABSTRACT

BACKGROUND AND AIMS: In temperate regions, trees undergo annual cycles of cambial growth, with periods of cambial activity and dormancy. Environmental factors might regulate the cambial growth, as well as the development of cambial derivatives. We investigated the effects of low temperature by localized cooling on cambial activity and latewood formation in two conifers, Chamaecyparis obtusa and Cryptomeria japonica. METHODS: A plastic rubber tube that contained cooled water was wrapped around a 30-cm-wide portion of the main stem of Chamaecyparis obtusa and Cryptomeria japonica trees during seasons of active cambium. Small blocks were collected from both cooled and non-cooled control portions of the stems for sequential observations of cambial activity and for anatomical measurements of cell morphology by light microscopy and image analysis. KEY RESULTS: The effect of localized cooling was first observed on differentiating tracheids. Tracheids narrow in diameter and with significantly decreased cambial activity were evident 5 weeks after the start of cooling in these stems. Eight weeks after the start of cooling, tracheids with clearly diminished diameters and thickened cell walls were observed in these stems. Thus, localized low temperature induced narrow diameters and obvious thickening of secondary cell walls of tracheids, which were identified as latewood tracheids. Two months after the cessation of cooling, a false annual ring was observed and cambium became active again and produced new tracheids. In Cryptomeria japonica, cambial activity ceased earlier in locally cooled portions of stems than in non-cooled stems, indicating that the cambium had entered dormancy sooner in the cooled stems. CONCLUSIONS: Artificial cooling of stems induced latewood formation and cessation of cambial activity, indicating that cambium and its derivatives can respond directly to changes in temperature. A decrease in the temperature of the stem is a critical factor in the control of cambial activity and xylem differentiation in trees.


Subject(s)
Cambium/physiology , Cold Temperature , Plant Stems/physiology , Seasons , Tracheophyta/physiology , Wood/physiology , Air , Chamaecyparis/physiology , Cryptomeria/physiology
5.
Ann Bot ; 113(6): 1021-7, 2014 May.
Article in English | MEDLINE | ID: mdl-24685716

ABSTRACT

BACKGROUND AND AIMS: The networks of vessel elements play a vital role in the transport of water from roots to leaves, and the continuous formation of earlywood vessels is crucial for the growth of ring-porous hardwoods. The differentiation of earlywood vessels is controlled by external and internal factors. The present study was designed to identify the limiting factors in the induction of cambial reactivation and the differentiation of earlywood vessels, using localized heating and disbudding of dormant stems of seedlings of a deciduous ring-porous hardwood, Quercus serrata. METHODS: Localized heating was achieved by wrapping an electric heating ribbon around stems. Disbudding involved removal of all buds. Three treatments were initiated on 1 February 2012, namely heating, disbudding and a combination of heating and disbudding, with untreated dormant stems as controls. Cambial reactivation and differentiation of vessel elements were monitored by light and polarized-light microscopy, and the growth of buds was followed. KEY RESULTS: Cambial reactivation and differentiation of vessel elements occurred sooner in heated seedlings than in non-heated seedlings before bud break. The combination of heating and disbudding of seedlings also resulted in earlier cambial reactivation and differentiation of first vessel elements than in non-heated seedlings. A few narrow vessel elements were formed during heating after disbudding, while many large earlywood vessel elements were formed in heated seedlings with buds. CONCLUSIONS: The results suggested that, in seedlings of the deciduous ring-porous hardwood Quercus serrata, elevated temperature was a direct trigger for cambial reactivation and differentiation of first vessel elements. Bud growth was not essential for cambial reactivation and differentiation of first vessel elements, but might be important for the continuous formation of wide vessel elements.


Subject(s)
Hot Temperature , Quercus/growth & development
6.
Ann Bot ; 112(7): 1321-9, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24043495

ABSTRACT

BACKGROUND AND AIMS: Gibberellin stimulates negative gravitropism and the formation of tension wood in tilted Acacia mangium seedlings, while inhibitors of gibberellin synthesis strongly inhibit the return to vertical growth and suppress the formation of tension wood. To characterize the role of gibberellin in tension wood formation and gravitropism, this study investigated the role of gibberellin in the development of gelatinous fibres and in the changes in anatomical characteristics of woody elements in Acacia mangium seedlings exposed to a gravitational stimulus. METHODS: Gibberellin, paclobutrazol and uniconazole-P were applied to the soil in which seedlings were growing, using distilled water as the control. Three days after the start of treatment, seedlings were inclined at 45 ° to the vertical and samples were harvested 2 months later. The effects of the treatments on wood fibres, vessel elements and ray parenchyma cells were analysed in tension wood in the upper part of inclined stems and in the opposite wood on the lower side of inclined stems. KEY RESULTS: Application of paclobutrazol or uniconazole-P inhibited the increase in the thickness of gelatinous layers and prevented the elongation of gelatinous fibres in the tension wood of inclined stems. By contrast, gibberellin stimulated the elongation of these fibres. Application of gibberellin and inhibitors of gibberellin biosynthesis had only minor effects on the anatomical characteristics of vessel and ray parenchyma cells. CONCLUSIONS: The results suggest that gibberellin is important for the development of gelatinous fibres in the tension wood of A. mangium seedlings and therefore in gravitropism.


Subject(s)
Acacia/physiology , Gelatin/drug effects , Gibberellins/pharmacology , Seedlings/physiology , Wood/physiology , Acacia/drug effects , Gravitropism/drug effects , Plant Stems/drug effects , Plant Stems/physiology , Seedlings/drug effects , Triazoles/pharmacology , Wood/drug effects
7.
BMC Res Notes ; 6: 7, 2013 Jan 05.
Article in English | MEDLINE | ID: mdl-23289861

ABSTRACT

BACKGROUND: Extended spectrum ß-lactamases (ESBLs) represent a major group of lactamases responsible for resistance, mostly produced by gram-negative bacteria, to newer generations of ß-lactam drugs currently being identified in large numbers worldwide. The present study was undertaken to see the frequency of ESBL producing Pseudomonas spp. isolated from six hundred clinical specimens (wound, pus, aural, urine, sputum, throat and other swabs) collected over a period of three years from two tertiary care hospitals in Bangladesh. FINDINGS: Aerobic bacterial culture was performed on aseptically collected swabs and only growth of Pseudomonas was considered for further species identification and ESBL production along with serotyping of Pseudomonas aeruginosa. Antimicrobial susceptibility testing was carried out using the Kirby-Bauer agar diffusion method and ESBL production was detected on Mueller Hinton agar by double-disk synergy technique using Amoxicillin-Clavulanic acid with Ceftazidime, Cefotaxime, Ceftriaxone and Aztreonam. Culture yielded 120 Pseudomonas spp. and 82 of them were biochemically characterized for species. Pseudomonas aeruginosa was found to be the predominant (90.2%) species. Of 82 isolates tested for ESBL, 31 (37.8%) were ESBL positive with 29 (93.5%) as Pseudomonas aeruginosa, the remaining 2 (6.5%) were Stenotrophomonas maltophilia and Ralstonia pickettii. Antibiogram revealed Imipenem as the most effective drug (93.3%) among all antimicrobials used against Pseudomonas spp. followed by Aminoglycosides (63.7%). CONCLUSION: ESBL producing Pseudomonas spp. was found to be a frequent isolate from two tertiary care hospitals in Bangladesh, showing limited susceptibility to antimicrobials and decreased susceptibility to Imipenem in particular, which is a matter of great concern.


Subject(s)
Pseudomonas/enzymology , Tertiary Care Centers , beta-Lactamases/metabolism , Bangladesh , Humans , Microbial Sensitivity Tests , Pseudomonas/drug effects , Pseudomonas/isolation & purification
8.
Physiol Plant ; 147(1): 46-54, 2013 Jan.
Article in English | MEDLINE | ID: mdl-22680337

ABSTRACT

The timing of cambial reactivation plays an important role in determination of the amount and quality of wood and the environmental adaptivity of trees. Environmental factors, such as temperature, influence the growth and development of trees. Temperatures from late winter to early spring affect the physiological processes that are involved in the initiation of cambial cell division and xylem differentiation in trees. Cumulative elevated temperatures from late winter to early spring result in earlier initiation of cambial reactivation and xylem differentiation in tree stems and an extended growth period. However, earlier cambial reactivation increases the risk for frost damage because the cold tolerance of cambium decreases after cambial reactivation. The present review focuses on temperature regulation on the timing of cambial reactivation and xylem differentiation in trees, and also highlights recent advances in our understanding of seasonal changes in the cold stability of microtubules in trees. The review also summarizes the present understanding of the relationships between the timing of cambial reactivation, the start of xylem differentiation and changes in levels of storage materials in trees, as well as an attempt to identify the source of energy for cell division and differentiation. A better understanding of the mechanisms that regulate wood formation in trees and the influence of environmental conditions on such mechanisms should help in efforts to improve and enhance the exploitation of wood for commercial applications and to prepare for climatic change.


Subject(s)
Cambium/cytology , Cambium/growth & development , Cell Differentiation/physiology , Cell Division/physiology , Plant Growth Regulators/metabolism , Temperature , Trees/growth & development , Environment , Plant Stems/growth & development , Seasons , Wood/growth & development
9.
Ann Bot ; 110(4): 875-85, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22843340

ABSTRACT

BACKGROUND AND AIMS: Latewood formation in conifers occurs during the later part of the growing season, when the cell division activity of the cambium declines. Changes in temperature might be important for wood formation in trees. Therefore, the effects of a rapid decrease in temperature on cellular morphology of tracheids were investigated in localized heating-induced cambial reactivation in Cryptomeria japonica trees and in Abies firma seedlings. METHODS: Electric heating tape and heating ribbon were wrapped on the stems of C. japonica trees and A. firma seedlings. Heating was discontinued when 11 or 12 and eight or nine radial files of differentiating and differentiated tracheids had been produced in C. japonica and A. firma stems, respectively. Tracheid diameter, cell wall thickness, percentage of cell wall area and percentage of lumen area were determined by image analysis of transverse sections and scanning electron microscopy. KEY RESULTS: Localized heating induced earlier cambial reactivation and xylem differentiation in stems of C. japonica and A. firma as compared with non-heated stems. One week after cessation of heating, there were no obvious changes in the dimensions of the differentiating tracheids in the samples from adult C. japonica. In contrast, tracheids with a smaller diameter were observed in A. firma seedlings after 1 week of cessation of heating. Two or three weeks after cessation of heating, tracheids with reduced diameters and thickened cell walls were found. The results showed that the rapid decrease in temperature produced slender tracheids with obvious thickening of cell walls that resembled latewood cells. CONCLUSIONS: The results suggest that a localized decrease in temperature of stems induces changes in the diameter and cell wall thickness of differentiating tracheids, indicating that cambium and its derivatives can respond directly to changes in temperature.


Subject(s)
Abies/growth & development , Cambium/growth & development , Cryptomeria/growth & development , Temperature , Abies/cytology , Cambium/cytology , Cell Division , Cell Wall/metabolism , Cryptomeria/cytology , Hot Temperature , Plant Stems/cytology , Plant Stems/growth & development , Seasons , Seedlings/cytology , Seedlings/growth & development , Time Factors , Trees , Wood , Xylem/cytology , Xylem/growth & development
10.
Ann Bot ; 110(4): 887-95, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22843341

ABSTRACT

BACKGROUND AND AIMS: Angiosperm trees generally form tension wood on the upper sides of leaning stems. The formation of tension wood is an important response to gravitational stimulus. Gibberellin appears to be involved in the differentiation of secondary xylem, but it remains unclear whether gibberellin plays a key role in the formation of tension wood and plant gravitropism. Therefore, a study was designed to investigate the effects of gibberellin and of inhibitors of the synthesis of gibberellin, namely paclobutrazole and uniconazole-P, on the formation of tension wood and negative stem gravitropism in Acacia mangium seedlings. METHODS: Gibberellic acid (GA(3)), paclobutrazole and uniconazole-P were applied to seedlings via the soil in which they were growing. Distilled water was applied similarly as a control. Three days after such treatment, seedlings were tilted at an angle of 45° from the vertical, and samples of stems were collected for analysis 2 weeks, 2 months and 6 months after tilting. The effects of treatments on the stem recovery degree (Rº) were analysed as an index of the negative gravitropism of seedlings, together the width of the region of tension wood in the upper part of inclined stems. KEY RESULTS: It was found that GA(3) stimulated the negative gravitropism of tilted seedling stems of A. mangium, while paclobutrazole and uniconazole-P inhibited recovery to vertical growth. Moreover, GA(3) stimulated the formation of tension wood in tilted A. mangium seedlings, while paclobutrazole and uniconazole-P strongly suppressed the formation of tension wood, as assessed 2 weeks after tilting. CONCLUSIONS: The results suggest that gibberellin plays an important role at the initial stages of formation of tension wood and in stem gravitropism in A. mangium seedlings in response to a gravitational stimulus.


Subject(s)
Acacia/drug effects , Gibberellins/pharmacology , Gravitropism/drug effects , Plant Growth Regulators/pharmacology , Acacia/cytology , Acacia/growth & development , Acacia/physiology , Gibberellins/antagonists & inhibitors , Gibberellins/metabolism , Gravitropism/physiology , Plant Growth Regulators/antagonists & inhibitors , Plant Growth Regulators/metabolism , Plant Stems/cytology , Plant Stems/drug effects , Plant Stems/growth & development , Plant Stems/physiology , Seedlings/cytology , Seedlings/drug effects , Seedlings/growth & development , Seedlings/physiology , Soil , Trees , Triazoles/pharmacology , Wood
11.
Planta ; 235(1): 165-79, 2012 Jan.
Article in English | MEDLINE | ID: mdl-21861112

ABSTRACT

The cold stability of microtubules during seasons of active and dormant cambium was analyzed in the conifers Abies firma, Abies sachalinensis and Larix leptolepis by immunofluorescence microscopy. Samples were fixed at room temperature and at a low temperature of 2-3°C to examine the effects of low temperature on the stability of microtubules. Microtubules were visible in cambium, xylem cells and phloem cells after fixation at room temperature during seasons of active and dormant cambium. By contrast, fixation at low temperature depolymerized microtubules in cambial cells, differentiating tracheids, differentiating xylem ray parenchyma and phloem ray parenchyma cells during the active season. However, similar fixation did not depolymerize microtubules during cambial dormancy in winter. Our results indicate that the stability of microtubules in cambial cells and cambial derivatives at low temperature differs between seasons of active and dormant cambium. Moreover, the change in the stability of microtubules that we observed at low temperature might be closely related to seasonal changes in the cold tolerance of conifers. In addition, low-temperature fixation depolymerized microtubules in cambial cells and differentiating cells that had thin primary cell walls, while such low-temperature fixation did not depolymerize microtubules in differentiating secondary xylem ray parenchyma cells and tracheids that had thick secondary cell walls. The stability of microtubules at low temperature appears to depend on the structure of the cell wall, namely, primary or secondary. Therefore, we propose that the secondary cell wall might be responsible for the cold stability of microtubules in differentiating secondary xylem cells of conifers.


Subject(s)
Cambium/growth & development , Cold Temperature , Microtubules/physiology , Phloem/physiology , Tracheophyta/physiology , Trees/physiology , Abies/growth & development , Adaptation, Physiological , Cell Wall/physiology , Fluorescent Antibody Technique , Japan , Larix/growth & development , Plant Stems/physiology , Seasons , Xylem/cytology
12.
Ann Bot ; 106(6): 885-95, 2010 Dec.
Article in English | MEDLINE | ID: mdl-21037242

ABSTRACT

BACKGROUND AND AIMS: Cambial reactivation in trees occurs from late winter to early spring when photosynthesis is minimal or almost non-existent. Reserve materials might be important for wood formation in trees. The localization and approximate levels of starch and lipids (as droplets) and number of starch granules in cambium and phloem were examined from cambial dormancy to the start of xylem differentiation in locally heated stems of Cryptomeria japonica trees in winter. METHODS: Electric heating tape was wrapped on one side of the stem of Cryptomeria japonica trees at breast height in winter. The localization and approximate levels of starch and lipids (as droplets) and number of starch granules were determined by image analysis of optical digital images obtained by confocal laser scanning microscopy. KEY RESULTS: Localized heating induced earlier cambial reactivation and xylem differentiation in stems of Cryptomeria japonica, as compared with non-heated stems. There were clear changes in the respective localizations and levels of starch and lipids (as droplets) determined in terms of relative areas on images, from cambial dormancy to the start of xylem differentiation in heated stems. In heated stems, the levels and number of starch granules fell from cambial reactivation to the start of xylem differentiation. There was a significant decrease in the relative area occupied by lipid droplets in the cambium from cambial reactivation to the start of xylem differentiation in heated stems. CONCLUSIONS: The results showed clearly that the levels and number of storage starch granules in cambium and phloem cells and levels of lipids (as droplets) in the cambium decreased from cambial reactivation to the start of xylem differentiation in heated stems during the winter. The observations suggest that starch and lipid droplets might be needed as sources of energy for the initiation of cambial cell division and the differentiation of xylem in Cryptomeria japonica.


Subject(s)
Cambium/metabolism , Cryptomeria/metabolism , Hot Temperature , Phloem/metabolism , Plant Stems/metabolism , Starch/metabolism , Lipid Metabolism/physiology , Microscopy, Confocal
13.
Tree Physiol ; 28(12): 1813-9, 2008 Dec.
Article in English | MEDLINE | ID: mdl-19193564

ABSTRACT

Several studies have demonstrated that localized heating of tree stems induces localized cambial reactivation. We analyzed by light microscopy the effects of early spring increases in ambient temperature in 2005 and 2007 on the timing of cambial reactivation and xylem differentiation in stems of two trees of a cloned deciduous hardwood hybrid poplar (Populus sieboldii Miquel. x P. grandidentata Michx.) growing under natural conditions. Meteorological data at the study site showed that temperatures in late winter and early spring differed markedly between 2005 and 2007, with trends toward higher temperatures starting around April 3 in 2005 and around March 20 in 2007. Cambial reactivation occurred about 17 days earlier in 2007 than in 2005. The cumulative daily maximum temperature in excess of 15 degrees C (maximum daily temperatures minus 15 degrees C) in late winter and early spring before cambial reactivation was defined as the cambial reactivation index (CRI(15)). Cambial reactivation, which began when the minimum temperature rose above 0 degrees C, occurred when the CRI(15) was 93 and 96 degrees C in 2005 and 2007, respectively. The differentiation of secondary xylem started earlier in 2007 than in 2005. On May 27, we found a wider current-year band of xylem and a higher frequency of small-diameter vessel elements in 2007 than in 2005. We propose that the timing of cambial reactivation is controlled by air temperature and that earlier cambial reactivation induces earlier differentiation of xylem in hybrid poplar under natural conditions. Our results indicate that the CRI might be a useful indicator of the timing of cambial reactivation.


Subject(s)
Cell Differentiation , Meristem/physiology , Populus/physiology , Temperature , Xylem/cytology , Hybridization, Genetic , Meristem/cytology , Populus/anatomy & histology , Populus/cytology , Xylem/physiology
14.
Ann Bot ; 100(3): 439-47, 2007 Sep.
Article in English | MEDLINE | ID: mdl-17621596

ABSTRACT

BACKGROUND AND AIMS: The timing of cambial reactivation plays an important role in the control of both the quantity and the quality of wood. The effect of localized heating on cambial reactivation in the main stem of a deciduous hardwood hybrid poplar (Populus sieboldii x P. grandidentata) was investigated. METHODS: Electric heating tape (20-22 degrees C) was wrapped at one side of the main stem of cloned hybrid poplar trees at breast height in winter. Small blocks were collected from both heated and non-heated control portions of the stem for sequential observations of cambial activity and for studies of the localization of storage starch around the cambium from dormancy to reactivation by light microscopy. KEY RESULTS: Cell division in phloem began earlier than cambial reactivation in locally heated portions of stems. Moreover, the cambial reactivation induced by localized heating occurred earlier than natural cambial reactivation. In heated stems, well-developed secondary xylem was produced that had almost the same structure as the natural xylem. When cambial reactivation was induced by heating, the buds of trees had not yet burst, indicating that there was no close temporal relationship between bud burst and cambial reactivation. In heated stems, the amount of storage starch decreased near the cambium upon reactivation of the cambium. After cambial reactivation, storage starch disappeared completely. Storage starch appeared again, near the cambium, during xylem differentiation in heated stems. CONCLUSIONS: The results suggest that, in deciduous diffuse-porous hardwood poplar growing in a temperate zone, the temperature in the stem is a limiting factor for reactivation of phloem and cambium. An increase in temperature might induce the conversion of storage starch to sucrose for the activation of cambial cell division and secondary xylem. Localized heating in poplar stems provides a useful experimental system for studies of cambial biology.


Subject(s)
Hot Temperature , Plant Stems/metabolism , Populus/genetics , Populus/metabolism , Plant Stems/cytology , Seasons
SELECTION OF CITATIONS
SEARCH DETAIL
...