Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Basic Microbiol ; 64(1): 42-49, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37612794

ABSTRACT

Ralstonia solanacearum is a rod-shaped phytopathogenic bacterium that causes lethal wilt disease in many plants. On solid agar growth medium, in the early hour of the growth of the bacterial colony, the type IV pili-mediated twitching motility, which is important for its virulence and biofilm formation, is prominently observed under the microscope. In this study, we have done a detailed observation of twitching motility in R. solanacearum colony. In the beginning, twitching motility in the microcolonies was observed as a density-dependent phenomenon that influences the shape of the microcolonies. No such phenomenon was observed in Escherichia coli, where twitching motility is absent. In the early phase of colony growth, twitching motility exhibited by the cells at the peripheral region of the colony was more prominent than the cells toward the center of the colony. Using time-lapse photography and merging the obtained photomicrographs into a video, twitching motility was observed as an intermittent phenomenon that progresses in layers in all directions as finger-like projections at the peripheral region of a bacterial colony. Each layer of bacteria twitches on top of the other and produces a multilayered film-like appearance. We found that the duration between the emergence of each layer diminishes progressively as the colony becomes older. This study on twitching motility demonstrates distinctly heterogeneity among the cells within a colony regarding their dynamics and the influence of microcolonies on each other regarding their morphology.


Subject(s)
Ralstonia solanacearum , Fimbriae, Bacterial , Virulence , Plant Diseases/microbiology
2.
J Microbiol Methods ; 207: 106707, 2023 04.
Article in English | MEDLINE | ID: mdl-36931327

ABSTRACT

For enumerating viable bacteria, traditional dilution plating to count colony forming units (CFUs) has always been the preferred method in microbiology owing to its simplicity, albeit being laborious and time-consuming. Similar CFU counts can be obtained by quantifying growing micro-colonies in conjunction with the benefits of a microscope. Here, we employed a simple method of five to ten microliter spotting of a diluted bacterial culture multiple times on a single Petri dish followed by determining CFU by counting micro-colonies using a phase-contrast microscope. In this method, the CFU of an Escherichia coli culture can be estimated within a four-hour period after spotting. Further, within a ten-hour period after spotting, CFU in a culture of Ralstonia solanacearum, a bacterium with a generation time of around 2 h, can be estimated. The CFU number determined by micro-colonies observed for 106-fold dilutions or lower is similar to that obtained by the dilution plating method for 107-fold dilutions or lower. Micro-colony numbers observed in the early hours of growth (2 h in case of E. coli and 8 h in case of R. solanacearum) were found to remain consistent at later hours (4 h in case of E. coli and 10 h in case of R. solanacearum), where the visibility of the colonies was better due to a noticeable increase in the size of the colonies. This suggested that micro-colonies observed in the early hours indeed represent the bacterial number in the culture. Practical applications to this counting method were employed in studying the rifampicin-resistant mutation rate as well as performing a fluctuation test in E. coli. The spotting method described here to enumerate bacterial CFU results in reduction of labour, time and resources.


Subject(s)
Bacteria , Escherichia coli , Colony Count, Microbial , Stem Cells
SELECTION OF CITATIONS
SEARCH DETAIL
...