Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-39038014

ABSTRACT

Lebanon's agricultural sector, known for its diverse crop and livestock production, faces challenges in the international market due to the presence of chemical residues and contaminants in its food exports. Recent rejections of these exports have raised global concerns about food safety, increasingly seen as vital for public health and economic prosperity. This review focuses on examining scientific studies about the levels of various chemical residues including pesticides, and veterinary drugs and contaminants like mycotoxins, and polycyclic aromatic hydrocarbons, and heavy metals in Lebanese food products. Findings indicate that these residues and contaminants often exceed both the maximum residue limits (MRLs) and maximum limits (MLs) set by the Codex Alimentarius and the European Union. The review concludes with recommendations for reducing these contaminants and residues to enhance Lebanon's food safety and quality, aligning with international standards, and mitigating the risk of export rejections.

2.
Dalton Trans ; 49(1): 95-101, 2020 Jan 07.
Article in English | MEDLINE | ID: mdl-31782454

ABSTRACT

A scandium hydridoborate complex supported by the dianionic pentadentate ligand B2Pz4Py is prepared via hydride abstraction from the previously reported scandium hydride complex with tris-pentafluorophenyl borane. Exposure of [(B2Pz4Py)Sc][HB(C6F5)3] to CO2 immediately forms [(B2Pz4Py)Sc][HCOOB(C6F5)3] at room temperature. The formatoborate complex can also be synthesized directly from the starting material (B2Pz4Py)ScCl with Et3SiH and B(C6F5)3 while in the presence of an atmosphere of CO2 in 81% yield. This compound was evaluated as the transition metal component of a tandem deoxgenative CO2 hydrosilation catalyst. At 5% loadings, complete consumption of Et3SiH was observed along with CO2 reduction products, but conversion to an inactive scandium complex identified as (B2Pz4Py)ScOSiEt3 was observed.

3.
Dalton Trans ; 47(38): 13680-13688, 2018 Oct 02.
Article in English | MEDLINE | ID: mdl-30209501

ABSTRACT

Alkyl and hydrido scandium complexes of the dianionic pentadentate ligand B2Pz4Py are reported. The key starting material (B2Pz4Py)ScCl is readily prepared and alkylated with organolithium reagents RLi (R = CH3, CH2SiMe3, CH2SiMe2Ph, CH2CH2CH3 and CH2CHMe2) to form alkyl derivatives in 61-93% yields. These compounds are very thermally stable and do not undergo sigma bond metathesis reactions with dihydrogen. The hydrido complex was prepared from (B2Pz4Py)ScCl and NaHBEt3 in 80% yield and was found to be more stable by 28 kcal mol-1 as a dimer, rather than a monomeric hydrido complex. However, the monomer is accessible through dissociation of the dimer at 80 °C. All of the compounds (B2Pz4Py)ScR react with water to form the bridging oxo dimer (B2Pz4Py)ScOSc(B2Pz4Py). The reactivity of the hydrido and methyl complexes towards carbon dioxide was explored; heating to 80 °C results in the formation of κ2 formato and acetate complexes, respectively. The mechanisms were studied via density functional theory and distinct transition states for insertion of CO2 into the Sc-R (R = H, CH3) were found, with the insertion into Sc-CH3 being more enthalpically difficult (by 18 kcal mol-1) than insertion into Sc-H. The slow rate of reaction between [(B2Pz4Py)ScH]2 and CO2 is attributed to the barrier associated with dimer dissociation. In both insertion reactions, the kinetic products are κ1 formato or acetate complexes that are only slightly less stable than the observed κ2 derivatives. The κ1 compounds can therefore be trapped by treating the κ2 isomers with tris-pentafluorophenyl borane.

4.
Dalton Trans ; 44(27): 12326-37, 2015 Jul 21.
Article in English | MEDLINE | ID: mdl-25748327

ABSTRACT

The preparation and characterization of a series of 8-hydroxyquinoline ligands and their complexes with Ti(IV), Al(III) and Zn(II) centres is presented. The complexes are characterized using NMR spectroscopy, elemental analysis and, in some cases, by single crystal X-ray diffraction experiments. The complexes are compared as initiators for the ring-opening polymerization of racemic-lactide; all the complexes show moderate/good rates and high levels of polymerization control. In the case of the titanium or aluminium complexes, moderate iso-selectivity is observed (Pi = 0.75), whereas in the case of the zinc complexes, moderate hetero-selectivity is observed (Ps = 0.70).

5.
Chemistry ; 20(41): 13345-55, 2014 Oct 06.
Article in English | MEDLINE | ID: mdl-25169120

ABSTRACT

Rh-containing metallacycles, [(TPA)Rh(III)(κ(2)-(C,N)-CH2CH2(NR)2-]Cl; TPA = N,N,N,N-tris(2-pyridylmethyl)amine have been accessed through treatment of the Rh(I) ethylene complex, [(TPA)Rh(η(2)-CH2CH2)]Cl ([1]Cl) with substituted diazenes. We show this methodology to be tolerant of electron-deficient azo compounds including azo diesters (RCO2N=NCO2R; R = Et [3]Cl, R = iPr [4]Cl, R = tBu [5]Cl, and R = Bn [6]Cl) and a cyclic azo diamide: 4-phenyl-1,2,4-triazole-3,5-dione (PTAD), [7]Cl. The latter complex features two ortho-fused ring systems and constitutes the first 3-rhoda-1,2-diazabicyclo[3.3.0]octane. Preliminary evidence suggests that these complexes result from N-N coordination followed by insertion of ethylene into a [Rh]-N bond. In terms of reactivity, [3]Cl and [4]Cl successfully undergo ring-opening using p-toluenesulfonic acid, affording the Rh chlorides, [(TPA)Rh(III)(Cl)(κ(1)-(C)-CH2CH2(NCO2R)(NHCO2R)]OTs; [13]OTs and [14]OTs. Deprotection of [5]Cl using trifluoroacetic acid was also found to give an ethyl substituted, end-on coordinated diazene [(TPA)Rh(III)(κ(2)-(C,N)-CH2CH2(NH)2-](+) [16]Cl, a hitherto unreported motif. Treatment of [16]Cl with acetyl chloride resulted in the bisacetylated adduct [(TPA)Rh(III)(κ(2)-(C,N)-CH2CH2(NAc)2-](+), [17]Cl. Treatment of [1]Cl with AcN=NAc did not give the Rh-N insertion product, but instead the N,O-chelated complex [(TPA)Rh(I)(κ(2)-(O,N)-CH3(CO)(NH)(N=C(CH3)(OCH=CH2))]Cl [23]Cl, presumably through insertion of ethylene into a [Rh]-O bond.

SELECTION OF CITATIONS
SEARCH DETAIL
...