Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Phys Chem Chem Phys ; 16(34): 18176-84, 2014 Sep 14.
Article in English | MEDLINE | ID: mdl-25052454

ABSTRACT

The thermal and chemical stability of micelle-synthesized size-selected Pt nanoparticles (NPs) supported on thin SiO2 (20 nm) films was monitored in situ via transmission electron microscopy (TEM) under pure hydrogen and pure oxygen environments. The coarsening treatment was performed for 30 min at each temperature (1 Torr of either O2 or H2), while the TEM measurements were carried out at 1 Torr of H2 and 0.5 Torr of O2. Surprisingly, the NPs were found to be stable against sintering under both gaseous atmospheres up to 650 °C. Nevertheless, drastic sintering via diffusion-coalescence was observed upon annealing in H2 at 800 °C. In contrast, an identically prepared sample demonstrated lack of agglomeration at the same temperature under O2. The latter observation is ascribed to a strengthened chemical bond at the NP/support interface due to the formation of PtOx species at low temperature. Subsequently, oxidative NP redispersion - associated with some loss of Pt due to the formation of volatile PtOx species - is inferred from the behavior in O2 at/above 650 °C. In contrast, SiO2 reduction catalyzed by the presence of the Pt NPs and Pt silicide formation was found in H2 at 800 °C, which might play a role in the enhanced coarsening observed. Subsequent exposure of the PtSi NPs to oxygen led to the formation of Pt-SiO2 core-shell structures. Our findings highlight the dynamic structural transformations that nanoscale materials experience under different environments and the important role played by their initial size, size distribution and dispersion on their stability against sintering.

2.
J Am Chem Soc ; 136(19): 6978-86, 2014 May 14.
Article in English | MEDLINE | ID: mdl-24746172

ABSTRACT

A study of particle size effects during the catalytic CO2 electroreduction on size-controlled Cu nanoparticles (NPs) is presented. Cu NP catalysts in the 2-15 nm mean size range were prepared, and their catalytic activity and selectivity during CO2 electroreduction were analyzed and compared to a bulk Cu electrode. A dramatic increase in the catalytic activity and selectivity for H2 and CO was observed with decreasing Cu particle size, in particular, for NPs below 5 nm. Hydrocarbon (methane and ethylene) selectivity was increasingly suppressed for nanoscale Cu surfaces. The size dependence of the surface atomic coordination of model spherical Cu particles was used to rationalize the experimental results. Changes in the population of low-coordinated surface sites and their stronger chemisorption were linked to surging H2 and CO selectivities, higher catalytic activity, and smaller hydrocarbon selectivity. The presented activity-selectivity-size relations provide novel insights in the CO2 electroreduction reaction on nanoscale surfaces. Our smallest nanoparticles (~2 nm) enter the ab initio computationally accessible size regime, and therefore, the results obtained lend themselves well to density functional theory (DFT) evaluation and reaction mechanism verification.

3.
ACS Nano ; 8(7): 6671-81, 2014 Jul 22.
Article in English | MEDLINE | ID: mdl-24437393

ABSTRACT

Gaining experimental insight into the intrinsic properties of nanoparticles (NPs) represents a scientific challenge due to the difficulty of deconvoluting these properties from various environmental effects such as the presence of adsorbates or a support. A synergistic combination of experimental and theoretical tools, including X-ray absorption fine-structure spectroscopy, scanning transmission electron microscopy, atomic force microscopy, and density functional theory was used in this study to investigate the structure and electronic properties of small (∼1-4 nm) Au NPs synthesized by an inverse micelle encapsulation method. Metallic Au NPs encapsulated by polystyrene 2-vinylpiridine (PS-P2VP) were studied in the solution phase (dispersed in toluene) as well as after deposition on γ-Al2O3. Our experimental data revealed a size-dependent contraction of the interatomic distances of the ligand-protected NPs with decreasing NP size. These findings are in good agreement with the results from DFT calculations of unsupported Au NPs surrounded by P2VP, as well as those obtained for pure (ligand-free) Au clusters of analogous sizes. A comparison of the experimental and theoretical results supports the conclusion that the P2VP ligands employed to stabilize the gold NPs do not lead to strong distortions in the average interatomic spacing. The changes in the electronic structure of the Au-P2VP NPs were found to originate mainly from finite size effects and not from charge transfer between the NPs and their environment (e.g., Au-ligand interactions). In addition, the isolated ligand-protected experimental NPs only display a weak interaction with the support, making them an ideal model system for the investigation of size-dependent physical and chemical properties of structurally well-defined nanomaterials.

4.
ACS Nano ; 7(11): 10327-34, 2013 Nov 26.
Article in English | MEDLINE | ID: mdl-24215320

ABSTRACT

An investigation of the thermal stability of size-selected Au nanoparticles (NPs) synthesized via inverse micelle encapsulation and deposited on SiO2(4 nm)/Si(100) is presented. The size and mobility of individual Au NPs after annealing at elevated temperatures in ultrahigh vacuum (UHV) was monitored via atomic force microscopy (AFM). An enhanced thermal stability against coarsening and lack of NP mobility was observed up to 1343 K. In addition, a drastic decrease in the average NP height was detected with increasing annealing temperature, which was not accompanied by the sublimation of Au atoms/clusters in UHV. The apparent decrease in the Au NP height observed is assigned to their ability to dig vertical channels in the underlying SiO2 support. More specifically, a progressive reduction in the thickness of the SiO2 support underneath and in the immediate vicinity of the NPs was evidenced, leading to NPs partially sinking into the SiO2 substrate. The complete removal of silicon oxide in small patches was observed to take place around the Au NPs after annealing at 1343 K in UHV. These results reveal a Au-assisted oxygen desorption from the support via reverse oxygen spillover to the NPs.

5.
ACS Nano ; 7(10): 9195-204, 2013 Oct 22.
Article in English | MEDLINE | ID: mdl-24015721

ABSTRACT

A study of the morphological and chemical stability of shape-selected octahedral Pt0.5Ni0.5 nanoparticles (NPs) supported on highly oriented pyrolytic graphite (HOPG) is presented. Ex situ atomic force microscopy (AFM) and in situ X-ray photoelectron spectroscopy (XPS) measurements were used to monitor the mobility of Pt0.5Ni0.5 NPs and to study long-range atomic segregation and alloy formation phenomena under vacuum, H2, and O2 environments. The chemical state of the NPs was found to play a pivotal role in their surface composition after different thermal treatments. In particular, for these ex situ synthesized NPs, Ni segregation to the NP surface was observed in all environments as long as PtOx species were present. In the presence of oxygen, an enhanced Ni surface segregation was observed at all temperatures. In contrast, in hydrogen and vacuum, the Ni outward segregation occurs only at low temperature (<200-270 °C), while PtOx species are still present. At higher temperatures, the reduction of the Pt oxide species results in Pt diffusion toward the NP surface and the formation of a Ni-Pt alloy. A consistent correlation between the NP surface composition and its electrocatalytic CO oxidation activity was established.

7.
ACS Nano ; 6(12): 10743-9, 2012 Dec 21.
Article in English | MEDLINE | ID: mdl-23140267

ABSTRACT

The stability of Pt nanoparticles (NPs) supported on ultrathin SiO(2) films on Si(111) was investigated in situ under H(2) and O(2) (0.5 Torr) by high-pressure X-ray photoelectron spectroscopy (HP-XPS) and ex situ by atomic force microscopy (AFM). No indication of sintering was observed up to 600 °C in both reducing and oxidizing environments for size-selected Pt NPs synthesized by inverse micelle encapsulation. However, HP-XPS revealed a competing effect of volatile PtO(x) desorption from the Pt NPs (~2 and ~4 nm NP sizes) at temperatures above 450 °C in the presence of 0.5 Torr of O(2). Under oxidizing conditions, the entire NPs were oxidized, although with no indication of a PtO(2) phase, with XPS binding energies better matching PtO. The stability of catalytic NPs in hydrogenation and oxidation reactions is of great importance due to the strong structure sensitivity observed in a number of catalytic processes of industrial relevance. An optimum must be found between the maximization of the surface active sites and metal loading (i.e., minimization of the NP size), combined with the maximization of their stability, which, as it will be shown here, is strongly dependent on the reaction environment.

8.
J Am Chem Soc ; 133(34): 13455-64, 2011 Aug 31.
Article in English | MEDLINE | ID: mdl-21790158

ABSTRACT

An in-depth understanding of the fundamental structure of catalysts during operation is indispensable for tailoring future efficient and selective catalysts. We report the evolution of the structure and oxidation state of ZrO(2)-supported Pd nanocatalysts (∼5 nm) during the in situ reduction of NO with H(2) using X-ray absorption fine-structure spectroscopy and X-ray photoelectron spectroscopy. Prior to the onset of the reaction (≤120 °C), a NO-induced redispersion of our initial metallic Pd nanoparticles over the ZrO(2) support was observed, and Pd(δ+) species were detected. This process parallels the high production of N(2)O observed at the onset of the reaction (>120 °C), while at higher temperatures (≥150 °C) the selectivity shifts mainly toward N(2) (∼80%). Concomitant with the onset of N(2) production, the Pd atoms aggregate again into large (6.5 nm) metallic Pd nanoparticles, which were found to constitute the active phase for the H(2)-reduction of NO. Throughout the entire reaction cycle, the formation and stabilization of PdO(x) was not detected. Our results highlight the importance of in situ reactivity studies to unravel the microscopic processes governing catalytic reactivity.

9.
J Am Chem Soc ; 132(44): 15714-9, 2010 Nov 10.
Article in English | MEDLINE | ID: mdl-20949968

ABSTRACT

Tailoring the chemical reactivity of nanomaterials at the atomic level is one of the most important challenges in catalysis research. In order to achieve this elusive goal, fundamental understanding of the geometric and electronic structure of these complex systems at the atomic level must be obtained. This article reports the influence of the nanoparticle shape on the reactivity of Pt nanocatalysts supported on γ-Al(2)O(3). Nanoparticles with analogous average size distributions (∼0.8-1 nm), but with different shapes, synthesized by inverse micelle encapsulation, were found to display distinct reactivities for the oxidation of 2-propanol. A correlation between the number of undercoordinated atoms at the nanoparticle surface and the onset temperature for 2-propanol oxidation was observed, demonstrating that catalytic properties can be controlled through shape-selective synthesis.

10.
J Am Chem Soc ; 132(25): 8747-56, 2010 Jun 30.
Article in English | MEDLINE | ID: mdl-20527749

ABSTRACT

The structure, size, and shape of gamma-Al(2)O(3)-supported Pt nanoparticles (NPs) synthesized by inverse micelle encapsulation have been resolved via a synergistic combination of imaging and spectroscopic tools. It is shown that this synthesis method leads to 3D NP shapes even for subnanometer clusters, in contrast to the raft-like structures obtained for the same systems via traditional deposition-precipitation methods. Furthermore, a high degree of atomic ordering is observed for the micellar NPs in H(2) atmosphere at all sizes studied, possibly due to H-induced surface reconstruction in these high surface area clusters. Our findings demonstrate that the influence of NP/support interactions on NP structure can be diminished in favor of NP/adsorbate interactions when NP catalysts are prepared by micelle encapsulation methods.

SELECTION OF CITATIONS
SEARCH DETAIL
...