Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 143(41): 17226-17235, 2021 10 20.
Article in English | MEDLINE | ID: mdl-34617746

ABSTRACT

We explore the selective electrocatalytic hydrogenation of lignin monomers to methoxylated chemicals, of particular interest, when powered by renewable electricity. Prior studies, while advancing the field rapidly, have so far lacked the needed selectivity: when hydrogenating lignin-derived methoxylated monomers to methoxylated cyclohexanes, the desired methoxy group (-OCH3) has also been reduced. The ternary PtRhAu electrocatalysts developed herein selectively hydrogenate lignin monomers to methoxylated cyclohexanes-molecules with uses in pharmaceutics. Using X-ray absorption spectroscopy and in situ Raman spectroscopy, we find that Rh and Au modulate the electronic structure of Pt and that this modulating steers intermediate energetics on the electrocatalyst surface to facilitate the hydrogenation of lignin monomers and suppress C-OCH3 bond cleavage. As a result, PtRhAu electrocatalysts achieve a record 58% faradaic efficiency (FE) toward 2-methoxycyclohexanol from the lignin monomer guaiacol at 200 mA cm-2, representing a 1.9× advance in FE and a 4× increase in partial current density compared to the highest productivity prior reports. We demonstrate an integrated lignin biorefinery where wood-derived lignin monomers are selectively hydrogenated and funneled to methoxylated 2-methoxy-4-propylcyclohexanol using PtRhAu electrocatalysts. This work offers an opportunity for the sustainable electrocatalytic synthesis of methoxylated pharmaceuticals from renewable biomass.

2.
ChemSusChem ; 14(15): 3198-3207, 2021 Aug 09.
Article in English | MEDLINE | ID: mdl-34111325

ABSTRACT

Lignin has emerged as an attractive alternative in the search for more eco-friendly and less costly materials for enzyme immobilization. In this work, the terephthalic aldehyde-stabilization of lignin is carried out during its extraction to develop a series of functionalized lignins with a range of reactive groups (epoxy, amine, aldehyde, metal chelates). This expands the immobilization to a pool of enzymes (carboxylase, dehydrogenase, transaminase) by different binding chemistries, affording immobilization yields of 64-100 %. As a proof of concept, a ω-transaminase reversibly immobilized on polyethyleneimine-lignin is integrated in a packed-bed reactor. The stability of the immobilized biocatalyst is tested in continuous-flow deamination reactions and maintains the same conversion for 100 cycles. These results outperform previous stability tests carried out with the enzyme covalently immobilized on methacrylic resins, with the advantage that the reversibility of the immobilized enzyme allows recycling and reuse of lignin beyond the enzyme inactivation. Additionally, an in-line system also based on lignin is added into the downstream process to separate the reaction products by catch-and-release. These results demonstrate a fully closed-loop sustainable flow-biocatalytic system based exclusively on lignin.

3.
Biomacromolecules ; 21(10): 4135-4148, 2020 10 12.
Article in English | MEDLINE | ID: mdl-32845140

ABSTRACT

Thanks to chemical stabilization, aldehyde-assisted fractionation (AAF) of lignocellulosic biomass has recently emerged as a powerful tool for the production of largely uncondensed lignin. Depolymerization of AAF lignin via ether cleavage provides aromatic monomers at near theoretical yields based on ether cleavage and an oligomeric fraction that remains largely unexploited despite its unique material properties. Here, we present an in-depth analytical characterization of AAF oligomers derived from hardwood and softwood in order to elucidate their molecular structures. These bioaromatic oligomers surpass technical Kraft lignin in terms of purity, solubility, and functionality and thus cannot even be compared to this common feedstock directly for material production. Instead, we performed comparative experiments with Kraft oligomers of similar molecular weight (Mn ∼ 1000) obtained through solvent extraction. These oligomers were then formulated into polyurethane materials. Substantial differences in material properties were observed depending on the amount of lignin, the botanical origin, and the biorefining process (AAF vs Kraft), suggesting new design principles for lignin-derived biopolymers with tailored properties. These results highlight the surprising versatility of AAF oligomers towards the design of new biomaterials and further demonstrate that AAF can enable the conversion of all biomass fractions into value-added products.


Subject(s)
Lignin , Polyurethanes , Aldehydes , Chemical Fractionation
SELECTION OF CITATIONS
SEARCH DETAIL
...