Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Physiol Mol Biol Plants ; 15(1): 53-9, 2009 Jan.
Article in English | MEDLINE | ID: mdl-23572912

ABSTRACT

One-year-old seedlings of Bruguiera gymnorrhiza (L) Savingay were exposed to 500 mM NaCl for 6d under hydroponic culture condition to characterize the changes in leaf and thylakoid protein profiles in response to short-term salt exposures. Significant changes in leaf dry mass, chlorophylls and soluble leaf proteins were observed in short term of salt exposures, as it happens under tidal situations in nature. Chlorophyll a/b ratio showed decrease of light harvesting efficiency in salt treatment. Total soluble proteins in leaves were extracted from control and NaCl-treated plants at 2d intervals and were analyzed by SDS-PAGE. Intensity of several protein bands of different molecular mass of leaf protein profile ranging from 10 to 86 kDa (10, 16, 23, 33, 37, 42, 44, 50 and 86 kDa) were decreased due to high salt treatment. Out of these, 16, 23 and 33 kDa protein bands decreased dramatically from 1-3 fold but recovered in 7d growth, except the 33 kDa band. SDSPAGE profile of thylakoid protein revealed that both number and the intensity of several protein bands got altered by salt concentration. However, 33 kDa protein band of thylakoid reappeared in recovery that might not be of the same characteristics with same molecular mass as shown in total leaf protein profile. The numbers of major bands found in SDS-PAGE were reduced when analyzed in urea-SDS-PAGE to minimize protein aggregations by high salt. It was noted that 47 kDa disappeared while some proteins of apparent molecular mass like 23 kDa, 33 kDa, 37 kDa and 50 kDa degraded to minor bands. Partial restoration of protein bands occurred when the salt-treated plants were brought back to initial growth condition. These results clearly demonstrate that short term high salt concentration could cause major alterations to photosynthetic apparatus of a true non salt-secreting tree mangrove Bruguiera gymnorrhiza and adapted against fluctuation of salinity by altering leaf protein pool relatively more than the thylakoid proteins.

SELECTION OF CITATIONS
SEARCH DETAIL
...