Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 8(45): 42164-42176, 2023 Nov 14.
Article in English | MEDLINE | ID: mdl-38024706

ABSTRACT

The present study deals with sonochemically in situ synthesis of a novel functional catalyst using hydrogen exfoliated graphene (HEG) supported titanium dioxide (TiO2) and copper sulfate (CuSO4) doped with zinc oxide (ZnO) (abbreviated as Ti/Cu/Zn-HEG). The synthesis of the Ti/Cu/Zn-HEG nanocomposite (NCs) catalyst was confirmed through its characterizations by XRD, SEM-EDX, TEM, XPS, FTIR, and BET methods. It was assessed for catalytic conversion of a model aromatic compound para-nitrophenol (p-NP) in an aqueous solution. The p-NP is a nitroaromatic compound that has a toxic and mutagenic effect. Its removal from the water system is necessary to protect the environment and living being. The newly synthesized Ti/Cu/Zn-HEG NCs were applied for their higher stability and catalytic activity as a potential candidate for reducing p-NP in practice. The operating parameters, such as p-NP concentration, catalyst dosage, and operating time were optimized for 150 ppm, 400 ppm, and 10 min through response surface methodology (RSM) in Design-Expert software to obtain the maximum reduction p-NP up to 98.4% at its normal pH of 7.1 against the controls (using HEG, Ti/Cu-HEG, and Zn-HEG). Analysis of variance of the response suggested the regression equation to be significant for the process with a major impact on catalyst concentration and operating time. The model prediction data (from RSM) and experimental data were corroborated well as reflected through model's low relative error (RE < 0.10), high regression coefficient (R2 > 0.97), and Willmott d-index (dwill-index > 0.95) values.

2.
Biotechnol Genet Eng Rev ; : 1-32, 2023 May 25.
Article in English | MEDLINE | ID: mdl-37226482

ABSTRACT

One of the most essential chemical processes that is utilized in the manufacturing of a great deal of contemporary goods is called heterogeneously catalyzed reactions, and it is also one of the most fascinating. Metallic nanostructures are heterogeneous catalysts for range reactions due to their huge surface area, large assembly of active surface sites, and quantum confinement effects. Unprotected metal nanoparticles suffer from irreversible agglomeration, catalyst poisoning, and limited life cycle. To circumvent these technical disadvantages, catalysts are frequently spread on chemically inert materials like as mesoporous Al2O3, ZrO2, and different types of ceramic material. In this research, plentiful bauxite residue is used to create a low-cost alternative catalytic material. We have hydrogenated p-Nitrophenol to p-Aminophenol on bauxite residue (BR) supported silver nanocomposites (Ag NCs). The phase and crystal structure, bond structure and morphological analysis of the developed material will be done XRD, FTIR, and SEM-EDX respectively. The ideal conditions were 150 ppm of catalyst, 0.1 mM of p-NP, and 10 minutes overall up-to 99% conversion of p-NP to p-AP. A multi-variable predictive model created using Response Surface Methodology (RSM) and a data-based Artificial Neural Network (ANN) model were found to be the best ways to predict the maximum conversion efficiency. ANN models predicted efficiency more accurately than RSM models, and the strong agreement between model predictions and experimental data was indicated by their low relative error (RE0.10), high regression coefficient (R2>0.97), and Willmott-d index (dwill-index > 0.95) values.

SELECTION OF CITATIONS
SEARCH DETAIL
...