Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
2.
Nephrol Dial Transplant ; 18(6): 1159-66, 2003 Jun.
Article in English | MEDLINE | ID: mdl-12748350

ABSTRACT

BACKGROUND: During the last few years the spectrum of renal osteodystrophy (ROD) in dialysis patients has been studied thoroughly and the prevalence of the various types of ROD has changed considerably. Whereas until a decade ago most patients presented with secondary hyperparathyroidism (HPTH), adynamic bone (ABD) has become the most common lesion within the dialysis population over the last few years. Much less is known about the spectrum of ROD in end-stage renal failure (ESRF) patients not yet on dialysis. METHODS: Transiliac bone biopsies were taken in an unselected group of 84 ESRF patients (44 male, age 54+/-12 years) before enrolment in a dialysis programme. All patients were recruited within a time period of 10 months from various centres (n=18) in Macedonia. Calcium carbonate was the only prescribed medication in patients followed up by the outpatient clinic. RESULTS: HPTH was found in only 9% of the patients, whilst ABD appeared to be the most frequent renal bone disease as it was observed in 23% of the cases next to normal bone (38%). A relatively high number of patients (n=10; 12%) fulfilled the criteria of osteomalacia (OM). Mixed osteodystrophy (MX) was diagnosed in 18% of the subjects. There was no significant difference between groups in age, creatinine, or serum and bone strontium and aluminium levels. Patient characteristics associated with ABD included male gender and diabetes, whilst OM was associated with older age (>58 years). CONCLUSIONS: In an unselected population of ESRF patients already, 62% of them have an abnormal bone histology. ABD is the most prevalent type of ROD in this population. In the absence of aluminium or strontium accumulation the relatively high prevalence of a low bone turnover as expressed by either normal bone or ABD and OM is striking.


Subject(s)
Chronic Kidney Disease-Mineral and Bone Disorder/epidemiology , Kidney Failure, Chronic/complications , Osteomalacia/epidemiology , Adult , Aged , Bone Remodeling , Chronic Kidney Disease-Mineral and Bone Disorder/classification , Chronic Kidney Disease-Mineral and Bone Disorder/etiology , Chronic Kidney Disease-Mineral and Bone Disorder/pathology , Creatinine/blood , Female , Humans , Logistic Models , Male , Middle Aged , Osteomalacia/etiology , Prevalence , Prospective Studies , Renal Dialysis , Republic of North Macedonia , Risk Factors
3.
Kidney Int ; 63(3): 927-35, 2003 Mar.
Article in English | MEDLINE | ID: mdl-12631073

ABSTRACT

BACKGROUND: We previously reported on increased bone strontium (Sr) levels in dialysis patients with osteomalacia versus those presenting other types of renal osteodystrophy. A causal role of strontium in the development of osteomalacia was established in a chronic renal failure (CRF) rat model. METHODS: In the present study we investigated whether the effect of Sr on bone was related to dosage. Four groups of CRF rats were studied: a control group (control-CFR; N=6) not receiving strontium and three groups of animals loaded orally with Sr during 18 weeks by adding the element as the SrCl2. H20 compound to the drinking water at concentrations of 0.03 g/100mL (Sr-30; N=6), 0.075 g/100mL (Sr-75; N=6), or 0.15 g/100mL (Sr-150; N=6) respectively. A fifth group consisting of seven animals with intact renal function (control-NRF), not receiving Sr served as controls for the effect of CRF on bone histology. RESULTS: As compared to the control-NRF and control-CRF groups, Sr administration resulted in a dose-dependent increase in bone and serum Sr levels. No difference in body weight and biochemical serum and urinary parameters [i.e., calcium (Ca), phosphorus (P), and creatinine] was noted between the various CRF groups. At sacrifice, intact parathyroid hormone (iPTH) levels of CRF groups were significantly (P < 0.05) higher than the values measured in the control-NRF group indicating the development of hyperparathyroidism secondary to the installation of the CRF. This is further supported by the differences in bone histomorphometry between the control-CRF and control-NRF animals, which, respectively, showed an increased amount of osteoid (mean +/- SEM 3.4 +/- 1.2% vs. 0.37 +/- 0.14%, P < 0.05) in combination with a distinct osteoblastic activity (35 +/- 11% vs. <2%, P < 0.05) and an increased bone formation rate [(BFR), 677 +/- 177 microm 2/mm2/day vs. 130 +/- 50 microm 2/mm2/day, P < 0.05]. Bone surface area and erodic perimeter did not differ between the various study groups. In the Sr-30 group, Sr loading went along with a dramatic reduction of the BFR as indicated by the total absence of double tetracyclin labels and osteoblastic activity, which in the presence of a low to normal amount of osteoid (2.7 +/- 1.9%) points to the development of the adynamic type of renal osteodystrophy. Interestingly, compared to the control-CRF group, histodynamic and histologic parameters of the Sr-75 group did not differ significantly and a substantial osteoblastic activity (7.6 +/- 4.0%) was seen also. In the Sr-150 group, the various osteoid parameters were significantly (P < 0.05) increased vs. all other groups and were accompanied by a reduced BFR and mineral apposition rate (MAR) and an increased mineralization lag time (MLT), indicating a mineralization defect and the development of osteomalacia. CONCLUSIONS: Our findings indicate that the role of Sr in the development of bone lesions in renal failure is complex and that, depending on the dose, the element may act via multiple pathways.


Subject(s)
Kidney Failure, Chronic/complications , Osteomalacia/drug therapy , Osteomalacia/etiology , Strontium/pharmacology , Animals , Calcification, Physiologic/drug effects , Disease Models, Animal , Dose-Response Relationship, Drug , Male , Nephrectomy , Osteoblasts/physiology , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...