Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 7: 44370, 2017 03 15.
Article in English | MEDLINE | ID: mdl-28295053

ABSTRACT

This paper draws attention to a hardware system which can be engineered so that its intrinsic physics is described by the generalized Ising model and can encode the solution to many important NP-hard problems as its ground state. The basic constituents are stochastic nanomagnets which switch randomly between the ±1 Ising states and can be monitored continuously with standard electronics. Their mutual interactions can be short or long range, and their strengths can be reconfigured as needed to solve specific problems and to anneal the system at room temperature. The natural laws of statistical mechanics guide the network of stochastic nanomagnets at GHz speeds through the collective states with an emphasis on the low energy states that represent optimal solutions. As proof-of-concept, we present simulation results for standard NP-complete examples including a 16-city traveling salesman problem using experimentally benchmarked models for spin-transfer torque driven stochastic nanomagnets.

2.
Sci Rep ; 6: 29893, 2016 07 21.
Article in English | MEDLINE | ID: mdl-27443521

ABSTRACT

Belief networks represent a powerful approach to problems involving probabilistic inference, but much of the work in this area is software based utilizing standard deterministic hardware based on the transistor which provides the gain and directionality needed to interconnect billions of them into useful networks. This paper proposes a transistor like device that could provide an analogous building block for probabilistic networks. We present two proof-of-concept examples of belief networks, one reciprocal and one non-reciprocal, implemented using the proposed device which is simulated using experimentally benchmarked models.

3.
Nat Nanotechnol ; 5(4): 266-70, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20190748

ABSTRACT

The possible use of spin rather than charge as a state variable in devices for processing and storing information has been widely discussed, because it could allow low-power operation and might also have applications in quantum computing. However, spin-based experiments and proposals for logic applications typically use spin only as an internal variable, the terminal quantities for each individual logic gate still being charge-based. This requires repeated spin-to-charge conversion, using extra hardware that offsets any possible advantage. Here we propose a spintronic device that uses spin at every stage of its operation. Input and output information are represented by the magnetization of nanomagnets that communicate through spin-coherent channels. Based on simulations with an experimentally benchmarked model, we argue that the device is both feasible and shows the five essential characteristics for logic applications: concatenability, nonlinearity, feedback elimination, gain and a complete set of Boolean operations.

SELECTION OF CITATIONS
SEARCH DETAIL
...