Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 9(1): 10422, 2019 Jul 18.
Article in English | MEDLINE | ID: mdl-31320718

ABSTRACT

Bathocuproine (BCP) is a well-studied cathode interlayer in organic photovoltaic (OPV) devices, where it for standard device configurations has demonstrated improved electron extraction as well as exciton blocking properties, leading to high device efficiencies. For inverted devices, however, BCP interlayers has shown to lead to device failure, mainly due to the clustering of BCP molecules on indium tin oxide (ITO) surfaces, which is a significant problem during scale-up of the OPV devices. In this work, we introduce C70 doped BCP thin films as cathode interlayers in inverted OPV devices. We demonstrate that the interlayer forms smooth films on ITO surfaces, resulting from the introduction of C70 molecules into the BCP film, and that these films possess both improved electron extraction as well exciton blocking properties, as evidenced by electron-only devices and photoluminescence studies, respectively. Importantly, the improved cathode interlayers leads to well-functioning large area (100 mm2) devices, showing a device yield of 100%. This is in strong contrast to inverted devices based on pure BCP layers. These results are founded by the effective suppression of BCP clustering from C70, along with the electron transport and exciton blocking properties of the two materials, which thus presents a route for its integration as an interlayer material towards up-scaled inverted OPV devices.

2.
ACS Omega ; 3(8): 9798-9804, 2018 Aug 31.
Article in English | MEDLINE | ID: mdl-30198002

ABSTRACT

In this work, SiO2 nanoparticles (NPs) were integrated into the mesoporous TiO2 layer of a perovskite solar cell to investigate their effect on cell performance. Different concentrations of SiO2/ethanol have been combined in TiO2/ethanol to prepare pastes for the fabrication of the mesoporous layer with which perovskite solar cells have been fabricated. Addition of SiO2 NPs of 50 and 100 nm sizes produces an enhancement of cell performance mainly because of an improvement of the photocurrent. This increment is in good agreement with the theoretical predictions based on light scattering induced by dielectric SiO2 NPs. The samples using modified scaffolds with NPs also present a significant lower current-potential hysteresis indicating that NP incorporation also affects the ion accumulation at the perovskite interface, providing an additional beneficial effect. The results stress the importance of the appropriated management of the optical properties on further optimization of perovskite solar cell technology.

3.
ACS Appl Mater Interfaces ; 9(15): 13181-13187, 2017 Apr 19.
Article in English | MEDLINE | ID: mdl-28351131

ABSTRACT

The photoconversion efficiency of perovskite solar cells (PSCs) is enhanced by the deposition of inorganic nanoparticles (NPs) at the interface between the compact TiO2 electron-selective contact and the mesoporous TiO2 film. The NPs used are core/shell Au@SiO2, where a thin SiO2 coating protects the Au core from the direct chemical interaction with CH3NH3PbI3 halide perovskite used as light-harvesting material. The samples prepared with Au@SiO2 NPs exhibit a higher external quantum efficiency in the complete wavelength range at which perovskite presents light absorption and not just at the wavelengths at which Au@SiO2 NPs present their absorption peak. This fact rules out a direct plasmonic process as responsible for the enhancement of cell performance. A detailed characterization by photoluminescence, impedance spectroscopy, and open-circuit voltage decay unveils a modification of the interfacial properties with an augmentation of the interfacial electrostatic potential that increases both photovoltage and photocurrent. This article highlights the dramatic role of interfaces in the performance of PSCs. The use of reduced quantities of highly stable inorganic compounds to modify the PSC interface instead of the extensively used organic compounds opens the door to a new surface engineering based on inorganic compounds.

4.
Anal Chim Acta ; 905: 85-92, 2016 Jan 28.
Article in English | MEDLINE | ID: mdl-26755141

ABSTRACT

This study aims at developing a novel, sensitive, fast, simple and convenient method for separation and preconcentration of trace amounts of fluoxetine before its spectrophotometric determination. The method is based on combination of magnetic mixed hemimicelles solid phase extraction and dispersive micro solid phase extraction using 1-hexadecyl-3-methylimidazolium bromide coated magnetic graphene as a sorbent. The magnetic graphene was synthesized by a simple coprecipitation method and characterized by X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy and scanning electron microscopy (SEM). The retained analyte was eluted using a 100 µL mixture of methanol/acetic acid (9:1) and converted into fluoxetine-ß-cyclodextrin inclusion complex. The analyte was then quantified by fiber optic linear array spectrophotometry as well as mode-mismatched thermal lens spectroscopy (TLS). The factors affecting the separation, preconcentration and determination of fluoxetine were investigated and optimized. With a 50 mL sample and under optimized conditions using the spectrophotometry technique, the method exhibited a linear dynamic range of 0.4-60.0 µg L(-1), a detection limit of 0.21 µg L(-1), an enrichment factor of 167, and a relative standard deviation of 2.1% and 3.8% (n = 6) at 60 µg L(-1) level of fluoxetine for intra- and inter-day analyses, respectively. However, with thermal lens spectrometry and a sample volume of 10 mL, the method exhibited a linear dynamic range of 0.05-300 µg L(-1), a detection limit of 0.016 µg L(-1) and a relative standard deviation of 3.8% and 5.6% (n = 6) at 60 µg L(-1) level of fluoxetine for intra- and inter-day analyses, respectively. The method was successfully applied to determine fluoxetine in pharmaceutical formulation, human urine and environmental water samples.


Subject(s)
Fluoxetine/isolation & purification , Magnetics , Micelles , Solid Phase Microextraction/methods , Spectrum Analysis/methods , Fiber Optic Technology , Imidazoles , Microscopy, Electron, Scanning , Osmolar Concentration
5.
Talanta ; 147: 561-8, 2016 Jan 15.
Article in English | MEDLINE | ID: mdl-26592647

ABSTRACT

A simple and rapid dispersive micro-solid phase extraction (DMSPE) combined with mode-mismatched thermal lens spectrometry as well as fiber optic linear array spectrophotometry was developed for the separation, extraction and determination of sulfadiazine. Graphene oxide was synthesized using the modified Hummers method and functionalized with iron oxide nanoparticles by means of a simple one step chemical coprecipitation method. The synthesized iron oxide functionalized graphene oxide was utilized as an efficient sorbent in DMSPE of sulfadiazine. The retained analyte was eluted by using 180µL of a 6:4 mixture of methanol/acetic acid solution and was spectrophotometrically determined based on the formation of an azo dye through coupling with thenoyltrifluoroacetone. Under the optimized conditions, with the application of spectrophotometry technique and with a sample volume of 100mL, the method exhibited a linear dynamic range of 3-80µg L(-1) with a detection limit of 0.82µg L(-1), an enrichment factor of 200 as well as the relative standard deviations of 2.6% and 4.3% (n=6) at 150µg L(-1) level of sulfadiazine for intra- and inter-day analyses, respectively. Whereas, through the application of the thermal lens spectrometry and a sample volume of 10mL, the method exhibited a linear dynamic range of 1-800µg L(-1) with a detection limit of 0.34µg L(-1) and the relative standard deviations of 3.1% and 5.4% (n=6) at 150µg L(-1) level of sulfadiazine for intra- and inter-day analyses, respectively. The method was successfully applied to the determination of sulfadiazine in milk, honey and water samples.


Subject(s)
Anti-Infective Agents/analysis , Environmental Pollutants/analysis , Ferrosoferric Oxide/chemistry , Graphite/chemistry , Oxides/chemistry , Sulfadiazine/analysis , Adsorption , Animals , Anti-Infective Agents/chemistry , Azo Compounds/chemistry , Environmental Pollutants/chemistry , Food Contamination/analysis , Groundwater/analysis , Honey/analysis , Microscopy, Electron, Scanning , Milk/chemistry , Rivers/chemistry , Solid Phase Microextraction , Spectrum Analysis/methods , Sulfadiazine/chemistry , Thenoyltrifluoroacetone/chemistry , X-Ray Diffraction
6.
J Hazard Mater ; 161(1): 276-80, 2009 Jan 15.
Article in English | MEDLINE | ID: mdl-18495339

ABSTRACT

Mercury (II) and methyl mercury cations at the Sub-ppb level were adsorbed quantitatively from aqueous solution onto an octadecyl-bonded silica membrane disk modified by 2-[(2-mercaptophyenylimino)methyl] phenol (MPMP). The trapped mercury was then eluted with 3ml ethanol and Hg2+ ion was directly measured by cold vapor atomic absorption spectrometry, utilizing tin (II) chloride. Total mercury (Hgt) was determined after conversion of MeHg+ into Hg2+ ion by electron beam irradiation. A sample volume of 1500ml resulted in a preconcentration factor of 500 and the precision for a sampling volume of 500ml at a concentration of 2.5microgl(-1) (n=7) was 3.1%. The limit of detection of the proposed method is 3.8ngl(-1). The method was successfully applied to analysis of water samples, and the accuracy was assessed via recovery experiment.


Subject(s)
Cold Temperature , Electrons , Mercury/analysis , Mercury/chemistry , Silicon Dioxide/chemistry , Spectrophotometry, Atomic/methods , Hydrogen-Ion Concentration , Ligands , Molecular Structure , Volatilization
SELECTION OF CITATIONS
SEARCH DETAIL
...