Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 8(28): 18097-106, 2016 Jul 20.
Article in English | MEDLINE | ID: mdl-27362635

ABSTRACT

Flexible Li-ion batteries attract increasing interest for applications in bendable and wearable electronic devices. TEMPO-oxidized cellulose nanofibrils (TOCNF), a renewable material, is a promising candidate as binder for flexible Li-ion batteries with good mechanical properties. Paper batteries can be produced using a water-based paper making process, avoiding the use of toxic solvents. In this work, finely dispersed TOCNF was used and showed good binding properties at concentrations as low as 4 wt %. The TOCNF was characterized using atomic force microscopy and found to be well dispersed with fibrils of average widths of about 2.7 nm and lengths of approximately 0.1-1 µm. Traces of moisture, trapped in the hygroscopic cellulose, is a concern when the material is used in Li-ion batteries. The low amount of binder reduces possible moisture and also increases the capacity of the electrodes, based on total weight. Effects of moisture on electrochemical battery performance were studied on electrodes dried at 110 °C in a vacuum for varying periods. It was found that increased drying time slightly increased the specific capacities of the LiFePO4 electrodes, whereas the capacities of the graphite electrodes decreased. The Coulombic efficiencies of the electrodes were not much affected by the varying drying times. Drying the electrodes for 1 h was enough to achieve good electrochemical performance. Addition of vinylene carbonate to the electrolyte had a positive effect on cycling for both graphite and LiFePO4. A failure mechanism observed at high TOCNF concentrations is the formation of compact films in the electrodes.

2.
Materials (Basel) ; 9(3)2016 Feb 25.
Article in English | MEDLINE | ID: mdl-28773252

ABSTRACT

The industrial lignin used here is a byproduct from Kraft pulp mills, extracted from black liquor. Since lignin is inexpensive, abundant and renewable, its utilization has attracted more and more attention. In this work, lignin was used for the first time as binder material for LiFePO4 positive and graphite negative electrodes in Li-ion batteries. A procedure for pretreatment of lignin, where low-molecular fractions were removed by leaching, was necessary to obtain good battery performance. The lignin was analyzed for molecular mass distribution and thermal behavior prior to and after the pretreatment. Electrodes containing active material, conductive particles and lignin were cast on metal foils, acting as current collectors and characterized using scanning electron microscopy (SEM), electrochemical impedance spectroscopy (EIS) and galvanostatic charge-discharge cycles. Good reversible capacities were obtained, 148 mAh·g-1 for the positive electrode and 305 mAh·g-1 for the negative electrode. Fairly good rate capabilities were found for both the positive electrode with 117 mAh·g-1 and the negative electrode with 160 mAh·g-1 at 1C. Low ohmic resistance also indicated good binder functionality. The results show that lignin is a promising candidate as binder material for electrodes in eco-friendly Li-ion batteries.

SELECTION OF CITATIONS
SEARCH DETAIL
...