Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
RSC Adv ; 14(22): 15680-15690, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38752156

ABSTRACT

Desulfurative functionalization of organosulfur compounds to form various carbon-carbon and carbon-heteroatom bonds has become established as a powerful tool in organic chemistry. In this context, desulfurative carboxylation of this class of compounds using carbon dioxide (CO2) as a sustainable and renewable source of carboxyl has recently been developed as an efficient option for the synthesis of carboxylic acid derivatives. The aim of this Focus Review is to summarize the major progress in this appealing research field with particular emphasis on the mechanistic features of the reactions. Literature has been surveyed until the end of February 2024, according to the data collected using SciFinder and Google Scholar engines.

2.
RSC Adv ; 14(21): 14919-14933, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38720972

ABSTRACT

The double decarboxylative coupling reaction between two (similar or different) molecules of carboxylic acids is an emerging area that has gained considerable attention as a new avenue for forging carbon-carbon bonds. Since this synthetic strategy only utilizes carboxylic acids as easily accessible, non-toxic and stable starting materials, and extrudes carbon dioxide (CO2) as the only waste by-product, it can be considered as an environmentally benign alternative to traditional coupling reactions which mainly rely on the use of toxic organic halides or organometallic reagents. The aim of this review is to highlight the recent advances and developments in this exciting new field that may serve as inspiration for future research to mature it.

3.
RSC Adv ; 14(13): 9184-9199, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38505389

ABSTRACT

In this review, we intend to summarize the most important discoveries in the deborylative (thio-/seleno-) cyanation of aryl boronic acids from 2006 to the end of 2023. Thus, the review is divided into three parts. The first section focuses exclusively on cyanation of aryl boronic acids into aryl nitriles. The second section covers the available literature on the synthesis of aryl thiocyanates through thiocyanation of respective aryl boronic acids. The third will discuss selenocyanation of aryl boronic acids into aryl selenocyanates.

4.
RSC Adv ; 13(46): 32502-32517, 2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37928841

ABSTRACT

Transformation of carbon dioxide (CO2) into value-added organic compounds has attracted increasing interest of scientific community in the last few decades, not only because CO2 is the primary greenhouse gas that drives global climate change and ocean acidification, but also because it has been regarded as a plentiful, nontoxic, nonflammable and renewable one-carbon (C1) feedstock. Among the various CO2-conversion processes, carboxylation reactions represent one of the most beautiful and attractive research topics in the field, since it offers the possibility for the construction of synthetically and biologically important carboxylic acids from various easily accessible (pseudo)halides, organosilicon, and organoboron compounds. The purpose of this review is to summarize the available literature on deoxygenative carboxylation of alcohols and their derivatives utilizing CO2 as a carboxylative reagent. Depending on the C-O compounds employed, the paper is divided into five major sections. The direct dehydroxylative carboxylation of free alcohols is discussed first. This is followed by reductive carboxylation of carboxylates, triflates, and tosylates. In the final section, the only reported example on catalytic carboxylation of fluorosulfates will be covered. Notably, special attention has been paid on the mechanistic aspects of the reactions that may provide new insights into catalyst improvement and development, which currently mainly relies on the use of transition metal catalysts.

5.
RSC Adv ; 13(47): 33390-33402, 2023 Nov 07.
Article in English | MEDLINE | ID: mdl-37964904

ABSTRACT

The purpose of this review is to summarize the current literature on reductive C-N coupling of nitro compounds and boronic acids, with special emphasis on the mechanistic features of the reactions. The metal-catalyzed reactions are discussed first. This is followed by electro-synthesis and organophosphorus-catalyzed reactions. Finally, the available examples of catalyst-free reactions will be covered at the end of this review.

SELECTION OF CITATIONS
SEARCH DETAIL
...