Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Physiol Lung Cell Mol Physiol ; 316(6): L999-L1012, 2019 06 01.
Article in English | MEDLINE | ID: mdl-30908936

ABSTRACT

Lung diseases with hypoxia are complicated by pulmonary hypertension, leading to heart failure and death. No pharmacological treatment exists. Increased proinflammatory cytokines are found in hypoxic patients, suggesting an inflammatory pathogenesis. Caspase-1, the effector of the inflammasome, mediates inflammation through activation of the proinflammatory cytokines interleukin (IL)-18 and IL-1ß. Here, we investigate inflammasome-related mechanisms that can trigger hypoxia-induced pulmonary hypertension. Our aim was to examine whether caspase-1 induces development of hypoxia-related pulmonary hypertension and is a suitable target for therapy. Wild-type (WT) and caspase-1-/- mice were exposed to 10% oxygen for 14 days. Hypoxic caspase-1-/- mice showed lower pressure and reduced muscularization in pulmonary arteries, as well as reduced right ventricular remodeling compared with WT. Smooth muscle cell (SMC) proliferation was reduced in caspase-1-deficient pulmonary arteries and in WT arteries treated with a caspase-1 inhibitor. Impaired inflammation was shown in hypoxic caspase-1-/- mice by abolished pulmonary influx of immune cells and lower levels of IL-18, IL-1ß, and IL-6, which were also reduced in the medium surrounding caspase-1 abrogated pulmonary arteries. By adding IL-18 or IL-1ß to caspase-1-deficient pulmonary arteries, SMC proliferation was retained. Furthermore, inhibition of both IL-6 and phosphorylated STAT3 reduced proliferation of SMC in vitro, indicating IL-18, IL-6, and STAT3 as downstream mediators of caspase-1-induced SMC proliferation in pulmonary arteries. Caspase-1 induces SMC proliferation in pulmonary arteries through the caspase-1/IL-18/IL-6/STAT3 pathway, leading to pulmonary hypertension in mice exposed to hypoxia. We propose that caspase-1 inhibition is a potential target for treatment of pulmonary hypertension.


Subject(s)
Caspase 1/genetics , Cell Hypoxia/physiology , Hypertension, Pulmonary/pathology , Myocytes, Smooth Muscle/physiology , Ventricular Function, Right/physiology , Animals , Cell Line , Cell Proliferation/genetics , Humans , Inflammasomes/metabolism , Interleukin-18/metabolism , Interleukin-1beta/metabolism , Interleukin-6/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Muscle, Smooth, Vascular/cytology , Muscle, Smooth, Vascular/growth & development , Pulmonary Artery/cytology , Pulmonary Artery/pathology , STAT3 Transcription Factor/metabolism
2.
J Appl Physiol (1985) ; 114(8): 988-97, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23412898

ABSTRACT

On the basis of the role of small, leucine-rich proteoglycans (SLRPs) in fibrogenesis and inflammation, we hypothesized that they could be involved in cardiac remodeling and reverse remodeling as occurs during aortic stenosis and after aortic valve replacement. Thus, in a well-characterized aortic banding-debanding mouse model, we examined the SLRPs decorin and lumican and enzymes responsible for synthesis of their glycosaminoglycan (GAG) chains. Four weeks after banding of the ascending aorta, mice were subjected to a debanding operation (DB) and were subsequently followed for 3 or 14 days. Sham-operated mice served as controls. Western blotting revealed a 2.5-fold increase in the protein levels of glycosylated decorin in mice with left ventricular pressure overload after aortic banding (AB) with a gradual decrease after DB. Interestingly, protein levels of three key enzymes responsible for decorin GAG chain synthesis were also increased after AB, two of them gradually declining after DB. The inflammatory chemokine (C-X-C motif) ligand 16 (CXCL16) was increased after AB but was not significantly altered following DB. In cardiac fibroblasts CXCL16 increased the expression of the GAG-synthesizing enzyme chondroitin polymerizing factor (CHPF). The protein levels of lumican core protein with N-linked oligosaccharides increased by sevenfold after AB and decreased again 14 days after DB. Lumican with keratan sulfate chains was not regulated. In conclusion, this study shows alterations in glycosylated decorin and lumican core protein that might be implicated in myocardial remodeling and reverse remodeling, with a potential important role for CS/DS GAG chain-synthesizing enzymes.


Subject(s)
Aortic Valve Stenosis/enzymology , Chondroitin Sulfate Proteoglycans/metabolism , Decorin/metabolism , Glycosyltransferases/metabolism , Keratan Sulfate/metabolism , Myocardium/enzymology , Ventricular Remodeling , Animals , Aortic Valve Stenosis/diagnostic imaging , Aortic Valve Stenosis/genetics , Aortic Valve Stenosis/immunology , Aortic Valve Stenosis/surgery , Blotting, Western , Cells, Cultured , Chemokine CXCL16 , Chemokine CXCL6/metabolism , Disease Models, Animal , Fibroblasts/enzymology , Fibroblasts/immunology , Gene Expression Regulation, Enzymologic , Glucuronosyltransferase , Glycosylation , Glycosyltransferases/genetics , Inflammation Mediators/metabolism , Lumican , Male , Mice , Mice, Inbred C57BL , Multifunctional Enzymes , Myocardial Contraction , Myocardium/immunology , Myocardium/pathology , N-Acetylgalactosaminyltransferases/metabolism , Time Factors , Ultrasonography , Ventricular Pressure
3.
J Mol Cell Cardiol ; 54: 73-81, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23178899

ABSTRACT

Pressure overload activates cardiac fibroblasts leading to excessive production of extracellular matrix which may contribute to compromised heart function. The activated fibroblast acquires smooth muscle-like features such as expression of smooth muscle α-actin (SMA) and SM22 and is therefore referred to as myofibroblast. The molecular mechanisms underlying mechanical stress-induced myofibroblast differentiation are poorly defined. The objective of this study was to examine the potential roles of the transmembrane proteoglycan syndecan-4 and the calcineurin-dependent transcription factor nuclear factor of activated T-cells (NFAT) in myofibroblast differentiation. Aortic banding resulted in elevated collagen I and III, fibronectin, SMA and SM22 mRNA in the left ventricles of wild-type mice, whereas this response was markedly reduced in syndecan-4(-/-) mice. Myofibroblast differentiation in vitro was associated with increased SMA, collagen I and III expression and NFAT-luciferase activity, all of which were reduced in fibroblasts from syndecan-4(-/-) mice or after treatment with calcineurin/NFAT blockers. Following cyclic stretch, NFATc4 was activated in cardiac fibroblasts in a syndecan-4- and calcineurin-dependent manner. Syndecan-4 and calcineurin co-localized and mechanical stress resulted in dephosphorylation of serine179 of syndecan-4, an intracellular residue critical for calcineurin interaction. Over-expression of NFATc4 up-regulated collagen III, MRTF-A (a transcriptional regulator of SMA) and the NFAT-target regulator of calcineurin 1.4 (RCAN1.4). Our data demonstrate that syndecan-4 is important for the differentiation of cardiac fibroblasts into myofibroblasts in the pressure-overloaded heart and that the calcineurin/NFAT pathway is engaged upon mechanical stress in a syndecan-4-dependent manner, playing an active role in myofibroblast differentiation and extracellular matrix production. This article is part of a Special Issue entitled 'Possible Editorial'.


Subject(s)
Cell Differentiation , Myofibroblasts/physiology , NFATC Transcription Factors/metabolism , Syndecan-4/metabolism , Actin Cytoskeleton/metabolism , Animals , Calcineurin/metabolism , Cells, Cultured , Collagen Type I/genetics , Collagen Type I/metabolism , Collagen Type III/genetics , Collagen Type III/metabolism , Extracellular Matrix Proteins/genetics , Extracellular Matrix Proteins/metabolism , Gene Expression , Gene Expression Regulation , Male , Mechanotransduction, Cellular , Mice , Mice, Inbred C57BL , Mice, Knockout , Myocardium/pathology , Phosphorylation , Protein Processing, Post-Translational , Protein Transport , Stress, Physiological , Trans-Activators/genetics , Trans-Activators/metabolism , Ventricular Pressure
4.
J Appl Physiol (1985) ; 112(8): 1372-82, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22345433

ABSTRACT

Chemokines have been suggested to play a role during development of left ventricular failure, but little is known about their role during right ventricular (RV) remodeling and dysfunction. We have previously shown that the chemokine (C-X-C motif) ligand 13 (CXCL13) regulates small leucine-rich proteoglycans (SLRPs). We hypothesized that chemokines are upregulated in the pressure-overloaded RV, and that they regulate SLRPs. Mice with RV pressure overload following pulmonary banding (PB) had a significant increase in RV weight and an increase in liver weight after 1 wk. Microarray analysis (Affymetrix) of RV tissue from mice with PB revealed that CXCL10, CXCL6, chemokine (C-X3-C motif) ligand 1 (CX3CL1), chemokine (C-C motif) ligand 5 (CCL5), CXCL16, and CCL2 were the most upregulated chemokines. Stimulation of cardiac fibroblasts with these same chemokines showed that CXCL16 increased the expression of the four SLRPs: decorin, lumican, biglycan, and fibromodulin. CCL5 increased the same SLRPs, except decorin, whereas CX3CL1 increased the expression of decorin and lumican. CXCL16, CX3CL1, and CCL5 were also shown to increase the levels of glycosylated decorin and lumican in the medium after stimulation of fibroblasts. In the pressure-overloaded RV tissue, Western blotting revealed an increase in the total protein level of lumican and a glycosylated form of decorin with a higher molecular weight compared with control mice. Both mice with PB and patients with pulmonary stenosis had significantly increased circulating levels of CXCL16 compared with healthy controls measured by enzyme immunoassay. In conclusion, we have found that chemokines are upregulated in the pressure-overloaded RV and that CXCL16, CX3CL1, and CCL5 regulate expression and posttranslational modifications of SLRPs in cardiac fibroblasts. In the pressure-overloaded RV, protein levels of lumican were increased, and a glycosylated form of decorin with a high molecular weight appeared.


Subject(s)
Chemokines/metabolism , Extracellular Matrix/metabolism , Hypertrophy, Right Ventricular/metabolism , Leucine/metabolism , Proteoglycans/metabolism , Ventricular Dysfunction, Right/metabolism , Adolescent , Animals , Case-Control Studies , Chemokine CCL5/metabolism , Chemokine CX3CL1/metabolism , Chemokine CXCL16 , Chemokine CXCL6/metabolism , Chemokines, CXC/metabolism , Child , Child, Preschool , Female , Fibroblasts/metabolism , Humans , Infant , Male , Mice , Mice, Inbred C57BL , Models, Animal , Pulmonary Valve Stenosis/metabolism , Receptors, Scavenger/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...