Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Ecol Evol ; 14(6): e11568, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38932948

ABSTRACT

Food availability varies considerably over space and time in wetland systems, and consumers must be able to track those changes during energetically-demanding points in the life cycle like breeding. Resource tracking has been studied frequently among herbivores, but receives less attention among consumers of macroinvertebrates. We evaluated the change in resource availability across habitat types and time and the simultaneous density of waterfowl consumers throughout their breeding season in a high-elevation, flood-irrigated system. We also assessed whether the macroinvertebrate resource density better predicted waterfowl density across habitats, compared to consistency (i.e., temporal evenness) of the invertebrate resource or taxonomic richness. Resource density varied marginally across wetland types but was highest in basin wetlands (i.e., ponds) and peaked early in the breeding season, whereas it remained relatively low and stable in other wetland habitats. Breeding duck density was positively related to resource density, more so than temporal resource stability, for all species. Resource density was negatively related to duckling density, however. These results have the potential to not only elucidate mechanisms of habitat selection among breeding ducks in flood-irrigated landscapes but also suggest there is not a consequential trade-off to selecting wetland sites based on energy density versus temporal resource stability and that good-quality wetland sites provide both.

2.
Ecol Evol ; 8(2): 961-972, 2018 01.
Article in English | MEDLINE | ID: mdl-29375770

ABSTRACT

Indirect risk effects of predators on prey behavior can have more of an impact on prey populations than direct consumptive effects. Predation risk can elicit more vigilance behavior in prey, reducing the amount of time available for other activities, such as foraging, which could potentially reduce foraging efficiency. Understanding the conditions associated with predation risk and the specific effects predation risk have on prey behavior is important because it has direct influences on the profitability of food items found under various conditions and states of the forager. The goals of this study were to assess how ducks perceived predation risk in various habitat types and how strongly perceived risk versus energetic demand affected foraging behavior. We manipulated food abundance in different wetland types in Illinois, USA to reduce confounding between food abundance and vegetation structure. We conducted focal-animal behavioral samples on five duck species in treatment and control plots and used generalized linear mixed-effects models to compare the effects of vegetation structure versus other factors on the intensity with which ducks fed and the duration of feeding stints. Mallards fed more intensively and, along with blue-winged teal, used longer feeding stints in open habitats, consistent with the hypothesis that limited visibility was perceived to have a greater predation risk than unlimited visibility. The species temporally nearest to nesting, wood ducks, were willing to take more risks for a greater food reward, consistent with an increase in a marginal value of energy as they approached nesting. Our results indicate that some duck species value energy differently based on the surrounding vegetation structure and density. Furthermore, increases in the marginal value of energy can be more influential than perceived risk in shaping foraging behavior patterns. Based on these findings, we conclude that the value of various food items is not solely determined by energy contained in the item but by conditions in which it is found and the state of the forager.

SELECTION OF CITATIONS
SEARCH DETAIL
...