Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 10472, 2023 06 28.
Article in English | MEDLINE | ID: mdl-37380707

ABSTRACT

Minimally invasive endovascular interventions have become an important tool for the treatment of cardiovascular diseases such as ischemic heart disease, peripheral artery disease, and stroke. X-ray fluoroscopy and digital subtraction angiography are used to precisely guide these procedures, but they are associated with radiation exposure for patients and clinical staff. Magnetic Particle Imaging (MPI) is an emerging imaging technology using time-varying magnetic fields combined with magnetic nanoparticle tracers for fast and highly sensitive imaging. In recent years, basic experiments have shown that MPI has great potential for cardiovascular applications. However, commercially available MPI scanners were too large and expensive and had a small field of view (FOV) designed for rodents, which limited further translational research. The first human-sized MPI scanner designed specifically for brain imaging showed promising results but had limitations in gradient strength, acquisition time and portability. Here, we present a portable interventional MPI (iMPI) system dedicated for real-time endovascular interventions free of ionizing radiation. It uses a novel field generator approach with a very large FOV and an application-oriented open design enabling hybrid approaches with conventional X-ray-based angiography. The feasibility of a real-time iMPI-guided percutaneous transluminal angioplasty (PTA) is shown in a realistic dynamic human-sized leg model.


Subject(s)
Angioplasty , Peripheral Arterial Disease , Humans , Angiography, Digital Subtraction , Brain , Magnetic Fields
2.
Phys Med ; 88: 65-70, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34192659

ABSTRACT

PURPOSE: Magnetic Particle Imaging (MPI) is a new, background- and radiation-free tomographic imaging method that enables near real-time imaging of superparamagnetic iron-oxide nanoparticles (SPIONs) with high temporal and spatial resolution. This phantom study aims to investigate the potential of MPI for visualization of the stent lumen in intracranial flow diverters (FD). METHODS: Nitinol FD of different dimensions (outer diameter: 3.5 mm, 4.0 mm, 5.5 mm; total length: 22-40 mm) were scanned in vascular phantoms in a custom-built MPI scanner (in-plane resolution: ~ 2 mm, field of view: 65 mm length, 29 mm diameter). Phantoms were filled with diluted (1:50) SPION tracer agent Ferucarbotran (10 µmol (Fe)/ml; NaCL). Each phantom was measured in 32 different projections (overall acquisition time per image: 3200 ms, 5averages). After image reconstruction from raw data, two radiologists assessed image quality using a 5-point Likert scale. The signal intensity profile was measured using a semi-automatic evaluation tool. RESULTS: MPI visualized the lumen of all FD without relevant differences between the stented vessel phantom and the reference phantom. At 3.5 mm image quality was slightly inferior to the larger diameters. The FD themselves neither generated an MPI signal nor did they lead to relevant imaging artifacts. Ratings of both radiologists showed no significant difference, interrater reliability was good (ICC 0.84). A quantitative evaluation of the signal intensity profile did not reveal any significant differences (p > 0.05) either. CONCLUSION: MPI visualizes the lumen of nitinol FD stents in vessel phantoms without relevant stent-induced artifacts.


Subject(s)
Artifacts , Tomography , Magnetic Phenomena , Phantoms, Imaging , Reproducibility of Results , Stents
3.
IEEE Trans Med Imaging ; 37(1): 61-67, 2018 01.
Article in English | MEDLINE | ID: mdl-28644801

ABSTRACT

Magnetic particle imaging (MPI) is a promising new tomographic imaging method to detect the spatial distribution of superparamagnetic iron-oxide nanoparticles (SPIOs). The aim of this paper was to investigate the potential of MPI to quantify artificial stenoses in vessel phantoms. Custom-made stenosis phantoms (length 40 mm; inner diameter 8 mm) with different degrees of stenosis (0%, 25%, 50%, 75%, and 100%) were scanned in a custom-built MPI scanner (in-plane resolution: ~1-1.5 mm and field of view: 65 29 29 mm3). Phantoms were filled with diluted Feru-carbotran [SPIO agent, 5 mmol (Fe)/l]. Each measurement (overall acquisition time: 20 ms per image, 400 averages) was repeated ten times to assess reproducibility. The MPI signal was used for semi-automatic stenosis quantification. Two stenosis evaluation approaches were compared based on the signal intensity profile alongside the stenosis phantoms. Using a novel multi-step image evaluation approach, MPI allowed for accurate quantification of different stenosis grades. While low grade stenoses were slightly over-estimated, high grade stenoses were slightly underestimated. In particular, the 0%, 25%, and 50% stenosis phantoms revealed a 6.2% ± 0.8, 25.7% ± 1.0, and 48.0% ± 1.5 stenosis, respectively. The higher grade 75% stenosis phantom revealed a 73.3% ± 2.8 and the 100% stenosis phantom a 95.8%± 1.9 stenosis. MPI accurately visualized and quantified different stenosis grades in vessel phantoms with high reproducibility demonstrating its great potential for fast and radiation-free preclinical cardiovascular imaging.


Subject(s)
Magnetite Nanoparticles/chemistry , Molecular Imaging/methods , Phantoms, Imaging , Tomography/methods , Animals , Carotid Stenosis/diagnostic imaging , Humans , Models, Cardiovascular
4.
Phys Med Biol ; 61(18): 6620-6634, 2016 09 21.
Article in English | MEDLINE | ID: mdl-27541258

ABSTRACT

Magnetic particle imaging (MPI) is a non-invasive imaging modality for direct detection of superparamagnetic iron-oxide nanoparticles based on the nonlinear magnetization response of magnetic materials to alternating magnetic fields. This highly sensitive and rapid method allows both a quantitative and a qualitative analysis of the measured signal. Since the first publication of MPI in 2005 several different scanner concepts have been presented and in 2009 the first in vivo imaging results of a beating mouse heart were shown. However, since the field of view (FOV) of the first MPI-scanner only covers a small region several approaches and hardware enhancements were presented to overcome this issue and could increase the FOV on cost of acquisition speed. In 2014 an alternative scanner concept, the traveling wave MPI (TWMPI), was presented, which allows scanning an entire mouse-sized volume at once. In this paper the first in vivo imaging results using the TWMPI system are presented. By optimizing the trajectory the temporal resolution is sufficiently high to resolve the dynamic of a beating mouse heart.


Subject(s)
Dextrans/chemistry , Heart/physiology , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Magnetics , Magnetite Nanoparticles/chemistry , Animals , Magnetic Resonance Imaging/instrumentation , Mice
5.
Neuroimage ; 49(4): 2907-14, 2010 Feb 15.
Article in English | MEDLINE | ID: mdl-19958838

ABSTRACT

Intrinsic coagulation factor XII deficient (FXII(-/-)) mice are protected from ischemic stroke. To elucidate underlying mechanisms we investigated the early ischemic period in vivo by multimodal magnetic resonance imaging (MRI) at 17.6 Tesla. Cerebral ischemia was induced by either transient (60 min) or permanent occlusion of the middle cerebral artery (t/pMCAO). 10 FXII(-/-) mice underwent t- , 10 FXII(-/-) mice p- and 10 Wildtype (Wt) mice tMCAO. Cerebral blood flow (CBF), diffusion-weighted-imaging (DWI) and T2-relaxometry were measured at 2 h and 24 h after MCAO. Outcome measures were evaluated after motion correction and normalization to atlas space. 2 h after tMCAO CBF reduction was similar in FXII(-/-) and Wt mice extending over cortical (CBF (ml/100 g/min) 33.6+/-6.9 vs. 35.3+/-4.6, p=0.42) and subcortical regions (25.7+/-4.5 vs. 31.6+/-4.0, p=0.17). At 24 h, recovery of cortical CBF by +36% was observed only in tMCAO FXII(-/-) mice contrasting a further decrease of -30% in Wt mice after tMCAO (p=0.02, F((1,18))=6.24). In FXII(-/-) mice in which patency of the MCA was not restored (pMCAO) a further decrease of -75% was observed. Cortical reperfusion in tMCAO FXII(-/-) mice was related to a lower risk of infarction of 59% vs. 93% in Wt mice (p=0.04). Subcortical CBF was similarly decreased in both tMCAO groups (Wt and FXII(-/-)) relating to a similar risk of infarction of 89% (Wt) vs. 99% (FXII(-/-), p=0.17). Deficiency of FXII allows neocortical reperfusion after tMCAO and rescues brain tissue by this mechanism. This study supports the concept of FXII as a promising new target for stroke prevention and therapy.


Subject(s)
Brain Ischemia/diagnosis , Brain Ischemia/therapy , Brain/pathology , Factor XII Deficiency/therapy , Reperfusion/methods , Stroke/diagnosis , Stroke/therapy , Animals , Brain Ischemia/complications , Disease Models, Animal , Factor XII Deficiency/complications , Factor XII Deficiency/diagnosis , Humans , Mice , Stroke/etiology , Treatment Outcome
6.
MAGMA ; 17(3-6): 353-8, 2004 Dec.
Article in English | MEDLINE | ID: mdl-15517470

ABSTRACT

The objective was to demonstrate the feasibility and to evaluate the performance of high-resolution in vivo magnetic resonance (MR) imaging of the rat spinal cord in a 17.6-T vertical wide-bore magnet. A probehead consisting of a surface coil that offers enlarged sample volume suitable for rats up to a weight of 220 g was designed. ECG triggered and respiratory-gated gradient echo experiments were performed on a Bruker Avance 750 wide-bore spectrometer for high-resolution imaging. With T*2 values between 5 and 20 ms, good image contrast could be obtained using short echo times, which also minimizes motion artifacts. Anatomy of healthy spinal cords and pathomorphological changes in traumatically injured rat spinal cord in vivo could be visualized with microscopic detail. It was demonstrated that imaging of the rat spinal cord in vivo using a vertical wide-bore high-magnetic-field system is feasible. The potential to obtain high-resolution images in short scan times renders high-field imaging a powerful diagnostic tool.


Subject(s)
Image Enhancement/instrumentation , Magnetic Resonance Imaging/instrumentation , Spinal Cord Injuries/pathology , Spinal Cord/pathology , Animals , Equipment Design , Equipment Failure Analysis , Feasibility Studies , Female , Image Enhancement/methods , Magnetic Resonance Imaging/methods , Magnetics , Rats , Rats, Inbred F344 , Reproducibility of Results , Sensitivity and Specificity , Thoracic Vertebrae/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...