Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS Negl Trop Dis ; 17(6): e0011249, 2023 06.
Article in English | MEDLINE | ID: mdl-37352363

ABSTRACT

The neglected tropical disease schistosomiasis impacts over 700 million people globally. Schistosoma mansoni, the trematode parasite that causes the most common type of schistosomiasis, requires planorbid pond snails of the genus Biomphalaria to support its larval development and transformation to the cercarial form that can infect humans. A greater understanding of neural signaling systems that are specific to the Biomphalaria intermediate host could lead to novel strategies for parasite or snail control. This study examined a Biomphalaria glabrata neural channel that is gated by the neuropeptide FMRF-NH2. The Biomphalaria glabrata FMRF-NH2 gated sodium channel (Bgl-FaNaC) amino acid sequence was highly conserved with FaNaCs found in related gastropods, especially the planorbid Planorbella trivolvis (91% sequence identity). In common with the P. trivolvis FaNaC, the B. glabrata channel exhibited a low affinity (EC50: 3 x 10-4 M) and high specificity for the FMRF-NH2 agonist. Its expression in the central nervous system, detected with immunohistochemistry and in situ hybridization, was widespread, with the protein localized mainly to neuronal fibers and the mRNA confined to cell bodies. Colocalization of the Bgl-FaNaC message with its FMRF-NH2 agonist precursor occurred in some neurons associated with male mating behavior. At the mRNA level, Bgl-FaNaC expression was decreased at 20 and 35 days post infection (dpi) by S. mansoni. Increased expression of the transcript encoding the FMRF-NH2 agonist at 35 dpi was proposed to reflect a compensatory response to decreased receptor levels. Altered FMRF-NH2 signaling could be vital for parasite proliferation in its intermediate host and may therefore present innovative opportunities for snail control.


Subject(s)
Biomphalaria , Schistosomiasis mansoni , Schistosomiasis , Trematoda , Animals , Male , Humans , Schistosoma mansoni/physiology , Biomphalaria/parasitology , FMRFamide , Schistosomiasis/parasitology , Central Nervous System , Schistosomiasis mansoni/parasitology , Host-Parasite Interactions/physiology
2.
Aquat Toxicol ; 170: 344-354, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26431593

ABSTRACT

Because basic toxicological data is unavailable for the majority of industrial compounds, High Throughput Screening (HTS) assays using the embryonic and larval zebrafish provide promising approaches to define bioactivity profiles and identify potential adverse outcome pathways for previously understudied chemicals. Unfortunately, standardized approaches, including HTS experimental designs, for examining fish behavioral responses to contaminants are rarely available. In the present study, we examined movement behavior of larval zebrafish over 7 days (4-10 days post fertilization or dpf) during typical daylight workday hours to determine whether intrinsic activity differed with age and time of day. We then employed an early life stage approach using the Fish Embryo Test (FET) at multiple developmental ages to evaluate whether photomotor response (PMR) behavior differed with zebrafish age following exposure to diazinon (DZN), a well-studied orthophosphate insecticide, and diphenhydramine (DPH), an antihistamine that also targets serotonin reuptake transporters and the acetylcholine receptor. 72h studies were conducted at 1-4, 4-7 and 7-10dpf, followed by behavioral observations using a ViewPoint system at 4, 7 and 10dpf. Distance traveled and swimming speeds were quantified; nominal treatment levels were analytically verified by isotope-dilution LC-MSMS. Larval zebrafish locomotion displayed significantly different (p<0.05) activity profiles over the course of typical daylight and workday hours, and these time of day PMR activity profiles were similar across ages examined (4-10dpf). 10dpf zebrafish larvae were consistently more sensitive to DPH than either the 4 or 7dpf larvae with an environmentally realistic lowest observed effect concentration of 200ng/L. Though ELS and FET studies with zebrafish typically focus on mortality or teratogenicity in 0-4dpf organisms, behavioral responses of slightly older fish were several orders of magnitude more sensitive to DPH. Our observations highlight the importance of understanding the influence of time of day on intrinsic locomotor activity, and the age-specific hazards of aquatic contaminants to fish behavior.


Subject(s)
Diazinon/toxicity , Diphenhydramine/toxicity , Insecticides/toxicity , Locomotion/drug effects , Water Pollutants, Chemical/toxicity , Animals , Behavior, Animal/drug effects , Chromatography, High Pressure Liquid , Diazinon/analysis , Diphenhydramine/analysis , Fertilization , Larva/drug effects , Receptors, Cholinergic/chemistry , Receptors, Cholinergic/metabolism , Serotonin Plasma Membrane Transport Proteins/chemistry , Serotonin Plasma Membrane Transport Proteins/metabolism , Swimming , Tandem Mass Spectrometry , Water Pollutants, Chemical/analysis , Zebrafish/growth & development , Zebrafish/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...