Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Integr Neurosci ; : 1550026, 2016 Jan 05.
Article in English | MEDLINE | ID: mdl-26729020

ABSTRACT

Extracellular recordings were performed from 69 units at different depths between 50 and [Formula: see text]m below the surface of tectum opticum in goldfish. Using large field stimuli (86[Formula: see text] visual angle) of 21 colored HKS-papers we were able to record from 54 color-sensitive units. The colored papers were presented for 5[Formula: see text]s each. They were arranged in the sequence of the color circle in humans separated by gray of medium brightness. We found 22 units with best responses between orange, red and pink. About 12 of these red-sensitive units were of the opponent "red-ON/blue-green-OFF" type as found in retinal bipolar- and ganglion cells as well. Most of them were also activated or inhibited by black and/or white. Some units responded specifically to red either with activation or inhibition. 18 units were sensitive to blue and/or green, 10 of them to both colors and most of them to black as well. They were inhibited by red, and belonged to the opponent "blue-green-ON/red-OFF" type. Other units responded more selectively either to blue, to green or to purple. Two units were selectively sensitive to yellow. A total of 15 units were sensitive to motion, stimulated by an excentrically rotating black and white random dot pattern. Activity of these units was also large when a red-green random dot pattern of high L-cone contrast was used. Activity dropped to zero when the red-green pattern did not modulate the L-cones. Neither of these motion selective units responded to any color. The results directly show color-blindness of motion vision, and confirm the hypothesis of separate and parallel processing of "color" and "motion".

2.
Vis Neurosci ; 24(6): 787-97, 2007.
Article in English | MEDLINE | ID: mdl-18093366

ABSTRACT

Temporal resolution is a basic property of the visual system and critically depends upon retinal temporal coding properties which are also of importance for directional coding. Whether the temporal coding properties for directional coding derive form inherent properties or critically depend upon the temporal coding mechanisms is unclear. Here, the influence of acetylcholine and GABA upon photopic temporal coding was investigated in goldfish, using flicker stimuli, in a behavioral and an electrophysiological (ERG) approach. The goldfish temporal resolution ability decreased from more than 90% correct choices at 20 Hz flicker frequency to about 65% at 45 Hz flicker frequency with a flicker fusion frequency of approximately 39 Hz. Blockade of GABAa-receptors reduced the flicker fusion frequency to about 23 Hz, not affecting temporal resolution below 20 Hz flicker frequency. Partial blockade of nicotinic acetylcholine receptors reduced the flicker fusion frequency slightly and lowered the temporal resolution ability in the 25-30 Hz range. Blockade of muscarinic acetylcholine receptors had a smaller effect than the partial blockade of nicotinic acetylcholine receptors. In ERG-recordings, blocking GABAa-receptors increased the a- and b-wave amplitude, induced a delay, an increase and a slow fall-off of the d-wave. Blocking GABAc-receptors had little effect. Blocking GABAa- or GABAa/c-receptors changed the temporal resolution, when expressed as a linear filter, from a 3rd degree filter with resonance to a low order low-pass filter with a low upper limit frequency. The temporal transfer properties were barely changed by blocking either nicotinic or muscarinic acetylcholine receptors, although ERG-components increased in amplitude to varying degrees. The behavioral and electrophysiological data indicate the important role of GABA for temporal processing but little involvement of the cholinergic system. It is proposed that the interaction of the GABAergic amacrine cell network and bipolar cells determines the gain of the retinal temporal coding in the upper frequency range.


Subject(s)
Acetylcholine/metabolism , Choice Behavior/physiology , Retina/physiology , gamma-Aminobutyric Acid/metabolism , Acetylcholine/pharmacology , Adaptation, Ocular , Animals , Behavior, Animal , Choice Behavior/drug effects , Choice Behavior/radiation effects , Cholinergic Agents/pharmacology , Dose-Response Relationship, Drug , Electroretinography/methods , Flicker Fusion/physiology , GABA Agents/pharmacology , Goldfish , Photic Stimulation/methods , Retina/drug effects , Retina/radiation effects , gamma-Aminobutyric Acid/pharmacology
3.
Vision Res ; 44(17): 2067-81, 2004.
Article in English | MEDLINE | ID: mdl-15149838

ABSTRACT

The influence of dopamine (DA) through either D1- or D2-dopamine receptors (D1-/D2-R) onto temporal transfer properties of the retina has been investigated using the ERG. Single flash responses and flicker responses were measured in the vitreous under photopic illumination conditions after application of either D1-/D2-R agonists or antagonists. All DA-R drugs did change the single flash responses, but only blockade of D2-R or activation of D1-R also changed the temporal transfer properties. In the Bode plot the gain characteristic was changed and thereby the upper limit frequency reduced. The action of DA is discussed on the base of a membrane resonance model in the outer retina versus a feed-forward inhibition model in the inner retina.


Subject(s)
Dopamine/physiology , Goldfish/physiology , Retina/physiology , 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/pharmacology , Adaptation, Ocular/physiology , Animals , Aspartic Acid/pharmacology , Benzazepines/pharmacology , Dopamine Agonists/pharmacology , Dopamine Antagonists/pharmacology , Electroretinography/methods , Models, Biological , Photoreceptor Cells/drug effects , Photoreceptor Cells/physiology , Quinpirole/pharmacology , Receptors, Dopamine D1/physiology , Receptors, Dopamine D2/physiology , Retina/drug effects , Sulpiride/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...