Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
J Contam Hydrol ; 255: 104160, 2023 04.
Article in English | MEDLINE | ID: mdl-36822030

ABSTRACT

Iron-coated sand (ICS) is a by-product from drinking water treatment made of sand coated with ferric iron (hydr)oxides. It is considered a suitable material for large-scale measures for phosphate removal from natural and agricultural waters to prevent eutrophication. Previous studies demonstrated that the residence time of water must be very long to reach equilibrium partitioning between phosphate and ICS but specifics for application are missing. First, SEM-EDX images were used to support the conceptual assumption that P adsorption inside the coating is a transport-limited process. Second, a conceptual model of phosphate adsorption was proposed considering two types of sites: one type with fast adsorption kinetics and reaching equilibrium with the percolating solution, and another type for which adsorption is also reversible but described by pseudo-first-order kinetics. The latter is conceived to account for transport-limited adsorption in the interior of the coating while the former fraction of sites is assumed to be easily accessible and located close to the grain surface. Third, the kinetics of phosphate adsorption on ICS were quantitatively determined to describe and predict phosphate retention in filters under various flow conditions. The model was calibrated and validated with long-term column experiments, which lasted for 3500 h to approach equilibrium on the slowly reacting sites. The model reproduced the outflowing phosphate concentrations: the pronounced increase after a few pore volumes and the slow increase over the remaining part of the experiment. The parameterized model was also able to predict the time evolution of phosphate concentrations in the outflow of column experiments with different flow velocities, flow interruption, and in desorption experiments. The equilibrium partition coefficient for the experimental conditions was identified as 28.1 L/g-Fe at pH 6.8 and a phosphate concentration of 1.7 mg-P / L. The optimized first-order mass transfer coefficient for the slow adsorption process was 1.56 10-4 h-1, implying that the slow adsorption process has a time scale of several months. However, based on the parameterized model, the slow adsorption process accounted for 95.5% of the equilibrium adsorption capacity, emphasizing the potential relevance of this process for practical applications. The implications for the design, operation, and lifespan of ICS filters are exemplarily illustrated for different scenarios.


Subject(s)
Iron , Water Pollutants, Chemical , Phosphates , Sand , Kinetics , Adsorption , Water Pollutants, Chemical/analysis
2.
J Environ Qual ; 52(1): 74-87, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36368314

ABSTRACT

Mitigation measures are needed to prevent large loads of phosphate originating in agriculture from reaching surface waters. Iron-coated sand (ICS) is a residual product from drinking water production. It has a high phosphate adsorption capacity and can be placed around tile drains, taking no extra space, which increases the farmers' acceptance. The main concern regarding the use of ICS filters below groundwater level is that limited oxygen supply and high organic matter concentrations may lead to the reduction and dissolution of iron (hydr)oxides present and the release of previously adsorbed phosphate. This study aimed to investigate phosphate adsorption on ICS at the onset of iron reduction. First, we investigated whether simultaneous metal reduction and phosphate adsorption were relevant at two field sites in the Netherlands that use ICS filters around tile drains. Second, the onset of microbially mediated reduction of ICS in drainage water was mimicked in complementary laboratory microcosm experiments by varying the intensity of reduction through controlling the oxygen availability and the concentration of degradable organic matter. After 3 yr, ICS filters in the field removed phosphorus under low redox conditions. Over 45 d, the microbial reduction of manganese and iron oxides did not lead to phosphate release, confirming field observations. Electron microscopy and X-ray absorption spectroscopy did not evince systematic structural or compositional changes; only under strongly reducing conditions did iron sulfides form in small percentages in the outer layer of the iron coating. Our results suggest that detrimental effects only become relevant after long periods of operation.


Subject(s)
Iron , Water Pollutants, Chemical , Iron/chemistry , Phosphorus/chemistry , Sand , Adsorption , Oxides , Phosphates , Water Pollutants, Chemical/chemistry
3.
Limnol Oceanogr ; 66(7): 2611-2631, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34413543

ABSTRACT

Coastal waters worldwide suffer from increased eutrophication and seasonal bottom water hypoxia. Here, we assess the dynamics of iron (Fe), manganese (Mn), and phosphorus (P) in sediments of the eutrophic, brackish Gulf of Finland populated by cable bacteria. At sites where bottom waters are oxic in spring, surface enrichments of Fe and Mn oxides and high abundances of cable bacteria were observed in sediments upon sampling in early summer. At one site, Fe and P were enriched in a thin layer (~ 3 mm) just below the sediment-water interface. X-ray absorption near edge structure and micro X-ray fluorescence analyses indicate that two-thirds of the P in this layer was associated with poorly crystalline Fe oxides, with an additional contribution of Mn(II) phosphates. The Fe enriched layer was directly overlain by a Mn oxide-rich surface layer (~ 2 mm). The Fe oxide layer was likely of diagenetic origin, formed through dissolution of Fe monosulfides and carbonates, potentially induced by cable bacteria in the preceding months when bottom waters were oxic. Most of the Mn oxides were likely deposited from the water column as part of a cycle of repeated deposition and remobilization. Further research is required to confirm whether cable bacteria activity in spring indeed promotes the formation of distinct layers enriched in Fe, Mn, and P minerals in Gulf of Finland sediments. The temporal variations in biogeochemical cycling in this seasonally hypoxic coastal system, potentially controlled by cable bacteria activity, have little impact on permanent sedimentary Fe, Mn, and P burial.

4.
Environ Sci Technol ; 54(19): 12795-12802, 2020 10 06.
Article in English | MEDLINE | ID: mdl-32885962

ABSTRACT

Sorption of nutrients such as phosphate (P) and silicate (Si) by ferric iron (oxyhydr)oxides (FeOx) modulates nutrient mobility and alters the structure and reactivity of the FeOx. We investigated the impact of these interactions on FeOx transformations using a novel approach with samplers containing synthetic FeOx embedded in diffusive hydrogels. The FeOx were prepared by Fe(III) hydrolysis and Fe(II) oxidation, in the absence and presence of P or Si. Coprecipitation of P or Si during synthesis altered the structure of Fe precipitates and, in the case of Fe(II) oxidation, lepidocrocite was (partly) substituted by poorly ordered FeOx. The pure and P- or Si-bearing FeOx were deployed in (i) freshwater sediment rich in dissolved Fe(II) and P and (ii) marine sediment with sulfidic pore water. Iron(II)-catalyzed crystallization of poorly ordered FeOx was negligible, likely due to surface passivation by adsorption of dissolved P. Reaction with dissolved sulfide was modulated by diffusion limitations and therefore the extent of sulfidation was the lowest for poorly ordered FeOx with high reactivity toward sulfide that created temporary, local sulfide depletion (Fh < Lp). We show that coprecipitation-induced changes in the FeOx structure affect coupled iron-nutrient cycling in aquatic ecosystems. The gel-based method enriches our geochemical toolbox by enabling detailed characterization of target phases under natural conditions.


Subject(s)
Ferric Compounds , Iron , Ecosystem , Oxidation-Reduction , Oxides , Phosphates , Silicates
5.
Chemosphere ; 234: 690-701, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31234086

ABSTRACT

Iron (oxyhydr)oxides (FeOx) control retention of dissolved nutrients and contaminants in aquatic systems. However, FeOx structure and reactivity is dependent on adsorption and incorporation of such dissolved species, particularly oxyanions such as phosphate and silicate. These interactions affect the fate of nutrients and metal(loids), especially in perturbed aquatic environments such as eutrophic coastal systems and environments impacted by acid mine drainage. Altered FeOx reactivity impacts sedimentary nutrient retention capacity and, eventually, ecosystem trophic state. Here, we explore the influence of phosphate (P) and silicate (Si) on FeOx structure and reactivity. Synthetic, poorly crystalline FeOx with adsorbed and coprecipitated phosphate or silicate at low but environmentally relevant P/Fe or Si/Fe ratios (0.02-0.1 mol mol-1) was prepared by base titration of Fe(III) solutions. Structural characteristics of FeOx were investigated by X-ray diffraction, synchrotron-based X-ray absorption spectroscopy and high-energy X-ray scattering. Reactivity of FeOx was assessed by kinetic dissolution experiments under acidic (dilute HCl, pH 2) and circum-neutral reducing (bicarbonate-buffered ascorbic acid, pH 7.8, Eh ∼ -300 mV) conditions. At these loadings, phosphate and silicate coprecipitation had only slight impact on local and intermediate-ranged FeOx structure, but significantly enhanced the dissolution rate of FeOx. Conversely, phosphate and silicate adsorption at similar loadings resulted in particle surface passivation and decreased FeOx dissolution rates. These findings indicate that varying nutrient loadings and different interaction mechanisms between anions and FeOx (adsorption versus coprecipitation) can influence the broader biogeochemical functioning of aquatic ecosystems by impacting the structure and reactivity of FeOx.


Subject(s)
Ecosystem , Environmental Pollutants/chemistry , Ferric Compounds/chemistry , Phosphates/chemistry , Silicates/chemistry , Water Pollutants, Chemical/chemistry , Adsorption , Environmental Pollutants/analysis , Kinetics , Phosphates/analysis , Silicates/analysis , Solubility , Water Pollutants, Chemical/analysis
6.
Water Res ; 155: 455-464, 2019 May 15.
Article in English | MEDLINE | ID: mdl-30870635

ABSTRACT

Iron-electrocoagulation is a promising contaminant (e.g. arsenic) removal technology that is based on electrochemical Fe(II) production from steel electrodes and subsequent transport of Fe(II) to the bulk solution, where contaminant removal occurs. Although Fe-electrocoagulation systems have been shown to effectively remove contaminants in extended field trials, the efficiency of field systems can be lower than in laboratory studies. One hypothesis for this disparity is that the Faradaic efficiency of short-term laboratory experiments is higher than field systems operated over extended periods. The Faradaic efficiency is a pivotal performance indicator that we define as the measured Fe dosage normalized by the theoretical Fe dosage calculated by Faraday's law. In this work, we investigated the Faradaic efficiency in laboratory experiments for up to 35 operating cycles (>2 months) with varied Fe(0) anode purity, charge dosage rate, and electrolyte composition. Our results showed that the Faradaic efficiency decreased continuously during repeated operation under typical field conditions (charge dosage rate = 4 C/L/min, synthetic groundwater) regardless of the Fe(0) anode purity, leading to a Faradaic efficiency ≈ 0.6 after 2 months. By contrast, increasing the charge dosage rate to ≥15 C/L/min produced a Faradaic efficiency >0.85 over the entire experiment for both Fe(0) anode purities. Electrolyte solutions free of oxyanions also resulted in sustained Faradaic efficiency >0.85, regardless of the charge dosage rate. Our results confirm a previously proposed relationship between low Faradaic efficiency and the formation of macroscopic electrode surface layers, which consist of Fe (oxyhydr)oxides on the anode and a mixture of Fe (oxyhydr)oxides and calcite on the cathode. Based on these results, we discuss potential strategies to maintain a high Faradaic efficiency during Fe-electrocoagulation field treatment.


Subject(s)
Groundwater , Water Pollutants, Chemical , Water Purification , Electrocoagulation , Electrodes , Iron
7.
Environ Sci Technol ; 51(4): 2140-2150, 2017 02 21.
Article in English | MEDLINE | ID: mdl-28121137

ABSTRACT

The impact on U(VI) adsorbed to lepidocrocite (γ-FeOOH) and hematite (α-Fe2O3) was assessed when exposed to aqueous sulfide (S(-II)aq) at pH 8.0. With both minerals, competition between S(-II) and U(VI) for surface sites caused instantaneous release of adsorbed U(VI). Compared to lepidocrocite, consumption of S(-II)aq proceeded slower with hematite, but yielded maximum dissolved U concentrations that were more than 10 times higher, representing about one-third of the initially adsorbed U. Prolonged presence of S(-II)aq in experiments with hematite in combination with a larger release of adsorbed U(VI), enhanced the reduction of U(VI): after 24 h of reaction about 60-70% of U was in the form of U(IV), much higher than the 25% detected in the lepidocrocite suspensions. X-ray absorption spectra indicated that U(IV) in both hematite and lepidocrocite suspensions was not in the form of uraninite (UO2). Upon exposure to oxygen only part of U(IV) reoxidized, suggesting that monomeric U(IV) might have become incorporated in newly formed iron precipitates. Hence, sulfidization of Fe oxides can have diverse consequences for U mobility: in short-term, desorption of U(VI) increases U mobility, while reduction to U(IV) and its possible incorporation in Fe transformation products may lead to long-term U immobilization.


Subject(s)
Ferric Compounds , Uranium , Iron , Minerals , Oxidation-Reduction , Oxides
8.
J Contam Hydrol ; 152: 12-7, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23832102

ABSTRACT

Knowledge of virus removal in subsurface environments is pivotal for assessing the risk of viral contamination of water resources and developing appropriate protection measures. Columns packed with sand are frequently used to quantify attachment, detachment and inactivation rates of viruses. Since column transport experiments are very laborious, a common alternative is to perform batch experiments where usually one or two measurements are done assuming equilibrium is reached. It is also possible to perform kinetic batch experiments. In that case, however, it is necessary to monitor changes in the concentration with time. This means that kinetic batch experiments will be almost as laborious as column experiments. Moreover, attachment and detachment rate coefficients derived from batch experiments may differ from those determined using column experiments. The aim of this study was to determine the utility of kinetic batch experiments and investigate the effects of different designs of the batch experiments on estimated attachment, detachment and inactivation rate coefficients. The experiments involved various combinations of container size, sand-water ratio, and mixing method (i.e., rolling or tumbling by pivoting the tubes around their horizontal or vertical axes, respectively). Batch experiments were conducted with clean quartz sand, water at pH 7 and ionic strength of 20 mM, and using the bacteriophage PRD1 as a model virus. Values of attachment, detachment and inactivation rate coefficients were found by fitting an analytical solution of the kinetic model equations to the data. Attachment rate coefficients were found to be systematically higher under tumbling than under rolling conditions because of better mixing and more efficient contact of phages with the surfaces of the sand grains. In both mixing methods, more sand in the container yielded higher attachment rate coefficients. A linear increase in the detachment rate coefficient was observed with increased solid-water ratio using tumbling method. Given the differences in the attachment rate coefficients, and assuming the same sticking efficiencies since chemical conditions of the batch and column experiments were the same, our results show that collision efficiencies of batch experiments are not the same as those of column experiments. Upscaling of the attachment rate from batch to column experiments hence requires proper understanding of the mixing conditions. Because batch experiments, in which the kinetics are monitored, are as laborious as column experiments, there seems to be no major advantage in performing batch instead of column experiments.


Subject(s)
Bacteriophage PRD1 , Silicon Dioxide/chemistry , Kinetics , Models, Theoretical
9.
J Contam Hydrol ; 144(1): 78-87, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23159762

ABSTRACT

The objective of this work was to investigate and obtain quantitative relations for the effects of Ca(2+) concentration on virus removal in saturated soil and to compare the experimental findings with predictions of the DLVO theory. In order to do so, a systematic study was performed with a range of calcium concentrations corresponding to natural field conditions. Experiments were conducted in a 50-cm column with clean quartz sand under saturated conditions. Inflow solutions were prepared by adding CaCl(2,) NaCl and NaHCO(3) to de-ionized water. Values of pH and ionic strength were fixed at 7 and 10mM, respectively. Bacteriophage PRD1 was used as a conservative model virus for virus removal. The samples were assayed using the plaque forming technique. Attachment, detachment and inactivation rate coefficients were determined from fitting breakthrough curves. Attachment rate coefficients were found to increase with increasing calcium concentration. Results were used to calculate sticking efficiency, for which an empirical formula as a function of Ca(2+) was developed. Numerical solutions of the Poisson-Boltzmann equation were obtained to evaluate the effect of Ca(2+) on the double-layer interactions between quartz and PRD1. Based on these results, the DLVO interaction energies were calculated. It turned out that the experimental findings cannot be explained with the distance profiles of the DLVO interaction. The discrepancy between theory and experiment can be attributed to underestimation of the van der Waals interactions, chemisorption of Ca(2+) onto the surfaces, or by factors affecting the double-layer interactions, which are not included in the Poisson-Boltzmann equation. When abruptly changing from inflow solution containing Ca(2+) to a Ca(2+)-free solution, pronounced mobilization of viruses was observed. This indicates virus removal is not irreversible and that chemical perturbations of the groundwater can cause a burst of released viruses.


Subject(s)
Bacteriophage PRD1/isolation & purification , Calcium , Models, Theoretical , Soil Microbiology , Water Microbiology , Colloids , Hydrogen-Ion Concentration , Osmolar Concentration , Quartz , Sodium , Water Purification/methods
10.
Appl Environ Microbiol ; 77(7): 2337-44, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21317256

ABSTRACT

Microbial iron oxidation is an integral part of the iron redox cycle in wetlands. Nonetheless, relatively little is known about the composition and ecology of iron-oxidizing communities in the soils and sediments of wetlands. In this study, sediment cores were collected across a freshwater tidal marsh in order to characterize the iron-oxidizing bacteria (FeOB) and to link their distributions to the geochemical properties of the sediments. We applied recently designed 16S rRNA primers targeting Gallionella-related FeOB by using a nested PCR-denaturing gradient gel electrophoresis (DGGE) approach combined with a novel quantitative PCR (qPCR) assay. Gallionella-related FeOB were detected in most of the samples. The diversity and abundance of the putative FeOB were generally higher in the upper 5 to 12 cm of sediment than in deeper sediment and higher in samples collected in April than in those collected in July and October. Oxygen supply by macrofauna appears to be a major force in controlling the spatial and temporal variations in FeOB communities. The higher abundance of Gallionella-related FeOB in April coincided with elevated concentrations of extractable Fe(III) in the sediments. Despite this coincidence, the distributions of FeOB did not exhibit a simple relationship to the redox zonation inferred from the geochemical depth profiles.


Subject(s)
Fresh Water/microbiology , Gallionellaceae/classification , Gallionellaceae/genetics , Genetic Variation , Iron/metabolism , Metagenome , Wetlands , Denaturing Gradient Gel Electrophoresis , Oxidation-Reduction , Polymerase Chain Reaction , Seasons
11.
Ground Water ; 49(1): 12-9, 2011.
Article in English | MEDLINE | ID: mdl-21039452

ABSTRACT

Objectives of this work are to investigate effects of pH and ionic strength (IS) on virus transport in saturated soil and to develop a quantitative relationship for these effects. A series of 50-cm column experiments with clean quartz sand under saturated conditions and with pH values of 5, 6, 7, 8, and IS values of 1, 10, and 20 mM were conducted. Bacteriophage PRD1 was used as a model virus. Applying a one-site kinetic model, attachment, detachment, and inactivation rate coefficients were determined from fitting breakthrough curves using the software package Hydrus-1D. Attachment rate coefficients increased with decreasing pH and increasing IS, in agreement with DLVO theory. Sticking efficiencies were calculated from the attachment rate coefficients and used to develop an empirical formula for sticking efficiency as a function of pH and IS. This relationship is applicable under unfavorable conditions for virus attachment. We compared sticking efficiencies predicted by the empirical formula with those from field and column experiments. Within the calibrated range of pH and IS, the predicted and observed sticking efficiencies are in reasonable agreement for bacteriophages PRD1 and MS2. However, the formula significantly overestimates sticking efficiencies for IS higher than 100 mM. In addition, it performs less well for viruses with different surface reactivity than PRD1 and MS2. Effects of pH and IS on detachment and inactivation rate coefficients were also investigated but the experimental results do not allow constraining these parameters with sufficient certainty.


Subject(s)
Bacteriophage PRD1/physiology , Environmental Monitoring , Hydrogen-Ion Concentration , Osmolar Concentration , Water Microbiology , Water Movements
12.
Environ Pollut ; 157(2): 377-83, 2009 Feb.
Article in English | MEDLINE | ID: mdl-19022541

ABSTRACT

Linear alkylbenzene sulfonates (LAS) are anionic high production volume surfactants used in the manufacture of cleaning products. Here, we have studied the effect of the characteristics of marine and estuarine sediments on the sorption of LAS. Sorption experiments were performed with single sediment materials (pure clays and sea sand), with sediments treated to reduce their organic carbon content, and with field marine and estuarine sediments. C12-2-LAS was used as a model compound. Sorption to the clays montmorillonite and kaolinite resulted in non-linear isotherms very similar for both clays. When reducing the organic content, sorption coefficients decreased proportionally to the fraction removed in fine grain sediments but this was not the case for the sandy sediment. The correlation of the sediment characteristics with the sorption coefficients at different surfactant concentrations showed that at concentrations below 10 microg C12-2-LAS/L, the clay content correlated better with sorption, while the organic fraction became more significant at higher concentrations.


Subject(s)
Alkanesulfonic Acids/chemistry , Geologic Sediments/chemistry , Water Pollutants, Chemical/chemistry , Adsorption , Aluminum Silicates/chemistry , Carbon/chemistry , Clay , Environmental Monitoring/methods , Seawater/chemistry , Surface-Active Agents/chemistry
13.
Colloids Surf B Biointerfaces ; 65(1): 126-33, 2008 Aug 01.
Article in English | MEDLINE | ID: mdl-18450432

ABSTRACT

Microbial biomass represents a potentially cost-effective sorbent for water treatment applications. High sorption capacities for both cations and anions are demonstrated here for viable and autoclaved cell suspensions of the Gram-negative bacterium Shewanella putrefaciens. FTIR absorption spectra and pH-dependent zeta-potentials are similar for the viable and killed bacterial cells. Potentiometric titrations, however, reveal a two to three times higher OH(-) buffering capacity for the living cells. The Cu(2+) sorption capacity of the viable cells is also about twice that of the autoclaved cells. Sorption of fluoride and phosphate is not pH-dependent, although an initial addition of acid or base was needed to activate the anion binding sites. Uptake of fluoride is comparable for viable and killed cells. For the viable cells, the isotherms of Zn(2+) and Cu(2+) indicate the presence of at least two distinct populations of cell wall binding sites. In competitive sorption experiments, Cu(2+) completely inhibits the binding of Zn(2+) to the cells at aqueous concentrations above 150 mg L(-1). The release of dissolved organic compounds by the viable cells depends on the concentrations of metal cations or fluoride to which the cells are exposed. In particular, the presence of Cu(2+) nearly completely suppresses the release of protein-like substances, possibly reflecting Cu(2+) toxicity.


Subject(s)
Biodegradation, Environmental , Cations, Divalent/metabolism , Copper/metabolism , Fluorides/metabolism , Phosphates/metabolism , Shewanella putrefaciens/metabolism , Zinc/metabolism , Adsorption , Hydrogen-Ion Concentration , Spectroscopy, Fourier Transform Infrared
SELECTION OF CITATIONS
SEARCH DETAIL
...