Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 31(24): 40557-40572, 2023 Nov 20.
Article in English | MEDLINE | ID: mdl-38041353

ABSTRACT

Ocean reflectance inversion algorithms provide many products used in ecological and biogeochemical models. While a number of different inversion approaches exist, they all use only spectral remote-sensing reflectances (Rrs(λ)) as input to derive inherent optical properties (IOPs) in optically deep oceanic waters. However, information content in Rrs(λ) is limited, so spectral inversion algorithms may benefit from additional inputs. Here, we test the simplest possible case of ingesting optical data ('seeding') within an inversion scheme (the Generalized Inherent Optical Property algorithm framework default configuration (GIOP-DC)) with both simulated and satellite datasets of an independently known or estimated IOP, the particulate backscattering coefficient at 532 nm (bbp(532)). We find that the seeded-inversion absorption products are substantially different and more accurate than those generated by the standard implementation. On global scales, seasonal patterns in seeded-inversion absorption products vary by more than 50% compared to absorption from the GIOP-DC. This study proposes one framework in which to consider the next generation of ocean color inversion schemes by highlighting the possibility of adding information collected with an independent sensor.

2.
Science ; 380(6644): 515-519, 2023 May 05.
Article in English | MEDLINE | ID: mdl-37141373

ABSTRACT

Over the vast open ocean, vital nutrients for phytoplankton growth in the sunlit surface layer are largely provided through physical transport from deep waters, but some nutrients are also provided through atmospheric deposition of desert dust. The extent and magnitude of dust-mediated effects on surface ocean ecosystems have been difficult to estimate globally. In this work, we use global satellite ocean color products to demonstrate widespread responses to atmospheric dust deposition across a diverse continuum of phytoplankton nutritional conditions. The observed responses vary regionally, with some areas exhibiting substantial changes in phytoplankton biomass, whereas in other areas, the response reflects a change in physiological status or health. Climate-driven changes in atmospheric aerosols will alter the relative importance of this nutrient source.

3.
Appl Opt ; 60(23): 6978-6988, 2021 Aug 10.
Article in English | MEDLINE | ID: mdl-34613181

ABSTRACT

In this study, we identify a seasonal bias in the ocean color satellite-derived remote sensing reflectances (Rrs(λ);sr-1) at the ocean color validation site, Marine Optical BuoY. The seasonal bias in Rrs(λ) is present to varying degrees in all ocean color satellites examined, including the Visible Infrared Imaging Radiometer Suite, Sea-Viewing Wide Field-of-View Sensor, and Moderate Resolution Imaging Spectrometer. The relative bias in Rrs has spectral dependence. Products derived from Rrs(λ) are affected by the bias to varying degrees, with particulate backscattering varying up to 50% over a year, chlorophyll varying up to 25% over a year, and absorption from phytoplankton or dissolved material varying by up to 15%. The propagation of Rrs(λ) bias into derived products is broadly confirmed on regional and global scales using Argo floats and data from the cloud-aerosol lidar with orthogonal polarization instrument aboard the cloud-aerosol lidar and infrared pathfinder satellite. The artifactual seasonality in ocean color is prominent in areas of low biomass (i.e., subtropical gyres) and is not easily discerned in areas of high biomass. While we have eliminated several candidates that could cause the biases in Rrs(λ), there are still outstanding questions regarding potential contributions from atmospheric corrections. Specifically, we provide evidence that the aquatic bidirectional reflectance distribution function may in part cause the observed seasonal bias, but this does not preclude an additional effect of the aerosol estimation. Our investigation highlights the contributions that atmospheric correction schemes can make in introducing biases in Rrs(λ), and we recommend more simulations to discern these influence Rrs(λ) biases. Community efforts are needed to find the root cause of the seasonal bias because all past, present, and future data are, or will be, affected until a solution is implemented.

4.
Geophys Res Lett ; 48(2): e2020GL090909, 2021 Jan 28.
Article in English | MEDLINE | ID: mdl-34531620

ABSTRACT

How well do we know the particulate backscattering coefficient (bbp) in the global ocean? Satellite lidar bbp has never been validated globally and few studies have compared lidar bbp to bbp derived from reflectances (via ocean color) or in situ observations. Here, we validate lidar bbp with autonomous biogeochemical Argo floats using a decorrelation analysis to identify relevant spatiotemporal matchup scales inspired by geographical variability in the Rossby radius of deformation. We compare lidar, float, and ocean color bbp at the same locations and times to assess performance. Lidar bbp outperforms ocean color, with a median percent error of 18% compared to 24% in the best case and a relative bias of -11% compared to -21%, respectively. Phytoplankton carbon calculated from ocean color and lidar exhibits basin-scale differences that can reach ±50%.

5.
Opt Express ; 27(21): 30191-30203, 2019 Oct 14.
Article in English | MEDLINE | ID: mdl-31684269

ABSTRACT

Satellite retrievals of particulate backscattering (bbp) are widely used in studies of ocean ecology and biogeochemistry, but have been historically difficult to validate due to the paucity of available ship-based comparative field measurements. Here we present a comparison of satellite and in situ bbp using observations from autonomous floats (n = 2,486 total matchups across three satellites), which provide bbp at 700 nm. With these data, we quantify how well the three inversion products currently distributed by NASA ocean color retrieve bbp. We find that the median ratio of satellite derived bbp to float bbp ranges from 0.77 to 1.60 and Spearman's rank correlations vary from r = 0.06 to r = 0.79, depending on which algorithm and sensor is used. Model skill degrades with increased spatial variability in remote sensing reflectance, which suggests that more rigorous matchup criteria and factors contributing to sensor noisiness may be useful to address in future work, and/or that we have built in biases in the current widely distributed inversion algorithms.

6.
Opt Express ; 20(19): 21532-51, 2012 Sep 10.
Article in English | MEDLINE | ID: mdl-23037273

ABSTRACT

The particulate optical backscattering coefficient (bbp) is a fundamental optical property that allows monitoring of marine suspended particles both in situ and from space. Backscattering measurements in the open ocean are still scarce, however, especially in oligotrophic regions. Consequently, uncertainties remain in bbp parameterizations as well as in satellite estimates of bbp. In an effort to reduce these uncertainties, we present and analyze a dataset collected in surface waters during the 19th Atlantic Meridional Transect. Results show that the relationship between particulate beam-attenuation coefficient (cp) and chlorophyll-a concentration was consistent with published bio-optical models. In contrast, the particulate backscattering per unit of chlorophyll-a and per unit of cp were higher than in previous studies employing the same sampling methodology. These anomalies could be due to a bias smaller than the current uncertainties in bbp. If that was the case, then the AMT19 dataset would confirm that bbp:cp is remarkably constant over the surface open ocean. A second-order decoupling between bbp and cp was, however, evident in the spectral slopes of these coefficients, as well as during diel cycles. Overall, these results emphasize the current difficulties in obtaining accurate bbp measurements in the oligotrophic ocean and suggest that, to first order, bbp and cp are coupled in the surface open ocean, but they are also affected by other geographical and temporal variations.

7.
Science ; 291(5513): 2594-7, 2001 Mar 30.
Article in English | MEDLINE | ID: mdl-11283369

ABSTRACT

The Sea-viewing Wide Field-of-view Sensor (SeaWiFS) provides global monthly measurements of both oceanic phytoplankton chlorophyll biomass and light harvesting by land plants. These measurements allowed the comparison of simultaneous ocean and land net primary production (NPP) responses to a major El Niño to La Niña transition. Between September 1997 and August 2000, biospheric NPP varied by 6 petagrams of carbon per year (from 111 to 117 petagrams of carbon per year). Increases in ocean NPP were pronounced in tropical regions where El Niño-Southern Oscillation (ENSO) impacts on upwelling and nutrient availability were greatest. Globally, land NPP did not exhibit a clear ENSO response, although regional changes were substantial.


Subject(s)
Biomass , Chlorophyll/analysis , Climate , Photosynthesis , Phytoplankton/metabolism , Plants/metabolism , Light , Oceans and Seas , Phytoplankton/growth & development , Plant Development , Seasons , Seawater , Spacecraft
SELECTION OF CITATIONS
SEARCH DETAIL
...