Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
Proc Natl Acad Sci U S A ; 119(51): e2211534119, 2022 12 20.
Article in English | MEDLINE | ID: mdl-36508653

ABSTRACT

Food fortification is an effective strategy to address vitamin A (VitA) deficiency, which is the leading cause of childhood blindness and drastically increases mortality from severe infections. However, VitA food fortification remains challenging due to significant degradation during storage and cooking. We utilized an FDA-approved, thermostable, and pH-responsive basic methacrylate copolymer (BMC) to encapsulate and stabilize VitA in microparticles (MPs). Encapsulation of VitA in VitA-BMC MPs greatly improved stability during simulated cooking conditions and long-term storage. VitA absorption was nine times greater from cooked MPs than from cooked free VitA in rats. In a randomized controlled cross-over study in healthy premenopausal women, VitA was readily released from MPs after consumption and had a similar absorption profile to free VitA. This VitA encapsulation technology will enable global food fortification strategies toward eliminating VitA deficiency.


Subject(s)
Vitamin A Deficiency , Vitamin A , Female , Rats , Animals , Food, Fortified , Cross-Over Studies , Cooking , Micronutrients
2.
Sci Adv ; 8(28): eabn5315, 2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35857507

ABSTRACT

Next-generation therapeutics require advanced drug delivery platforms with precise control over morphology and release kinetics. A recently developed microfabrication technique enables fabrication of a new class of injectable microparticles with a hollow core-shell structure that displays pulsatile release kinetics, providing such capabilities. Here, we study this technology and the resulting core-shell microstructures. We demonstrated that pulsatile release is governed by a sudden increase in porosity of the polymeric matrix, leading to the formation of a porous path connecting the core to the environment. Moreover, the release kinetics within the range studied remained primarily independent of the particle geometry but highly dependent on its composition. A qualitative technique was developed to study the pattern of pH evolution in the particles. A computational model successfully modeled deformations, indicating sudden expansion of the particle before onset of release. Results of this study contribute to the understanding and design of advanced drug delivery systems.

3.
Food Chem Toxicol ; 151: 112117, 2021 May.
Article in English | MEDLINE | ID: mdl-33722604

ABSTRACT

Recent studies have demonstrated silk fibroin protein's (SF) ability to extend the shelf life of foods by mitigating the hallmarks of spoilage, namely oxidation and dehydration. Due to the potential for this protein to become more widespread, its safety was evaluated comprehensively. First, a bacterial reverse mutation test (Ames test) was conducted in five bacterial strains. Second, an in vivo erythrocyte test was conducted with Sprague Dawley rats at doses up to 1,000mg/kg-bw/day. Third, a range-finder study was conducted with Sprague Dawley rats at the highest consumption amount given solubility and oral gavage volume constrains (500mg/kg-bw/day). Fourth, a 28-day sub-chronic study in Sprague Dawley rats was conducted with the high dose set at 500mg/kg-bw/day, as limited by solubility of the protein in a single-gavage per-day study. Fifth, an in vitro pepsin digestion assay was performed to assess the potential for protein allergenicity. Sixth, allergenic potential was further assessed using liquid chromatography-mass spectroscopy for detection of allergenic insect proteins. Seventh, the SF protein sequences were subjected to bioinformatic analyses. Together, these studies raise no mutagenic, genotoxic, toxicological, or allergenic concerns with the oral consumption of silk fibroin.


Subject(s)
Bombyx/metabolism , Fibroins/toxicity , Food Hypersensitivity/etiology , Administration, Oral , Animals , Bombyx/growth & development , Female , Fibroins/administration & dosage , Male , Mice , Mice, Inbred ICR , Rats , Rats, Sprague-Dawley , Toxicity Tests
4.
Sci Adv ; 6(28): eabb6594, 2020 07.
Article in English | MEDLINE | ID: mdl-32923598

ABSTRACT

Inefficient injection of microparticles through conventional hypodermic needles can impose serious challenges on clinical translation of biopharmaceutical drugs and microparticle-based drug formulations. This study aims to determine the important factors affecting microparticle injectability and establish a predictive framework using computational fluid dynamics, design of experiments, and machine learning. A numerical multiphysics model was developed to examine microparticle flow and needle blockage in a syringe-needle system. Using experimental data, a simple empirical mathematical model was introduced. Results from injection experiments were subsequently incorporated into an artificial neural network to establish a predictive framework for injectability. Last, simulations and experimental results contributed to the design of a syringe that maximizes injectability in vitro and in vivo. The custom injection system enabled a sixfold increase in injectability of large microparticles compared to a commercial syringe. This study highlights the importance of the proposed framework for optimal injection of microparticle-based drugs by parenteral routes.


Subject(s)
Machine Learning , Syringes , Drug Compounding , Injections , Viscosity
5.
Sci Transl Med ; 11(518)2019 11 13.
Article in English | MEDLINE | ID: mdl-31723037

ABSTRACT

Micronutrient deficiencies affect up to 2 billion people and are the leading cause of cognitive and physical disorders in the developing world. Food fortification is effective in treating micronutrient deficiencies; however, its global implementation has been limited by technical challenges in maintaining micronutrient stability during cooking and storage. We hypothesized that polymer-based encapsulation could address this and facilitate micronutrient absorption. We identified poly(butylmethacrylate-co-(2-dimethylaminoethyl)methacrylate-co-methylmethacrylate) (1:2:1) (BMC) as a material with proven safety, offering stability in boiling water, rapid dissolution in gastric acid, and the ability to encapsulate distinct micronutrients. We encapsulated 11 micronutrients (iron; iodine; zinc; and vitamins A, B2, niacin, biotin, folic acid, B12, C, and D) and co-encapsulated up to 4 micronutrients. Encapsulation improved micronutrient stability against heat, light, moisture, and oxidation. Rodent studies confirmed rapid micronutrient release in the stomach and intestinal absorption. Bioavailability of iron from microparticles, compared to free iron, was lower in an initial human study. An organotypic human intestinal model revealed that increased iron loading and decreased polymer content would improve absorption. Using process development approaches capable of kilogram-scale synthesis, we increased iron loading more than 30-fold. Scaled batches tested in a follow-up human study exhibited up to 89% relative iron bioavailability compared to free iron. Collectively, these studies describe a broad approach for clinical translation of a heat-stable ingestible micronutrient delivery platform with the potential to improve micronutrient deficiency in the developing world. These approaches could potentially be applied toward clinical translation of other materials, such as natural polymers, for encapsulation and oral delivery of micronutrients.


Subject(s)
Hot Temperature , Micronutrients/administration & dosage , Microspheres , Administration, Oral , Animals , Biological Availability , Biological Transport , Delayed-Action Preparations , Drug Liberation , Female , Humans , Hyaluronic Acid/chemistry , Intestinal Absorption , Intestines/physiology , Iron/metabolism , Methacrylates/chemistry , Mice , Oxidation-Reduction , Ultraviolet Rays , Vitamin A/metabolism , Water
6.
Biomacromolecules ; 20(1): 102-108, 2019 01 14.
Article in English | MEDLINE | ID: mdl-29979873

ABSTRACT

We demonstrate entrapment of the commensal skin bacteria Staphylococcus epidermidis in mats composed of soft nanotubes made by membrane-templated layer-by-layer (LbL) assembly. When cultured in broth, the resulting nanofibrillar patches efficiently delay the escape of bacteria and their planktonic growth, while displaying high steady-state metabolic activity. Additionally, the material properties and metabolic activity can be further tuned by postprocessing the patches with additional polysaccharide LbL layers. These patches offer a promising methodology for the fabrication of bacterial skin dressings for the treatment of skin dysbiosis while preventing adverse effects due to bacterial proliferation.


Subject(s)
Biological Dressings , Nanofibers/chemistry , Anti-Bacterial Agents/chemical synthesis , Chitosan/analogs & derivatives , Polyamines/chemistry , Polystyrenes/chemistry , Staphylococcus epidermidis/drug effects
7.
Adv Mater ; 30(51): e1803925, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30328144

ABSTRACT

The emergence of antimicrobial resistance poses a major challenge to healthcare. Probiotics offer a potential alternative treatment method but are often incompatible with antibiotics themselves, diminishing their overall therapeutic utility. This work uses biofilm-inspired encapsulation of probiotics to confer temporary antibiotic protection and to enable the coadministration of probiotics and antibiotics. Probiotics are encapsulated within alginate, a crucial component of pseudomonas biofilms, based on a simple two-step alginate cross-linking procedure. Following exposure to the antibiotic tobramycin, the growth and metabolic activity of encapsulated probiotics are unaffected by tobramycin, and they show a four-log survival advantage over free probiotics. This results from tobramycin sequestration on the periphery of alginate beads which prevents its diffusion into the core but yet allows probiotic byproducts to diffuse outward. It is demonstrated that this approach using tobramycin combined with encapsulated probiotic has the ability to completely eradicate methicillin-resistant Staphylococcus aureus and Pseudomonas aeruginosa in coculture, the two most widely implicated bacteria in chronic wounds.


Subject(s)
Biofilms , Biomimetic Materials/chemistry , Drug Carriers/chemistry , Infections/drug therapy , Probiotics/chemistry , Probiotics/therapeutic use , Alginic Acid/chemistry , Capsules
8.
Proc Natl Acad Sci U S A ; 115(23): E5269-E5278, 2018 06 05.
Article in English | MEDLINE | ID: mdl-29784798

ABSTRACT

Vaccination in the developing world is hampered by limited patient access, which prevents individuals from receiving the multiple injections necessary for protective immunity. Here, we developed an injectable microparticle formulation of the inactivated polio vaccine (IPV) that releases multiple pulses of stable antigen over time. To accomplish this, we established an IPV stabilization strategy using cationic polymers for pH modulation to enhance traditional small-molecule-based stabilization methods. We investigated the mechanism of this strategy and showed that it was broadly applicable to all three antigens in IPV. Our lead formulations released two bursts of IPV 1 month apart, mimicking a typical vaccination schedule in the developing world. One injection of the controlled-release formulations elicited a similar or better neutralizing response in rats, considered the correlate of protection in humans, than multiple injections of liquid vaccine. This single-administration vaccine strategy has the potential to improve vaccine coverage in the developing world.


Subject(s)
Immunization Schedule , Poliovirus Vaccine, Inactivated/administration & dosage , Vaccination/methods , Animals , Disease Models, Animal , Female , Humans , Injections/methods , Microspheres , Poliomyelitis/prevention & control , Rats , Rats, Wistar
9.
Adv Healthc Mater ; 7(14): e1800220, 2018 07.
Article in English | MEDLINE | ID: mdl-29732715

ABSTRACT

Stabilizing thermolabile pharmaceuticals outside of the cold chain has the potential to alleviate some of the logistical and monetary burden of providing health care access in the developing world. Evaporative cooling hydrogel packaging is designed to extend the storage stability of existing pharmaceutical products without the need for reformulation. Hydrogels with high water content and reversible hydrophilicity offer a promising platform for reducing storage temperatures without refrigeration. As a model, poly(N-isopropylacrylamide) is selected as a basis for creating a potentially low cost and easy-to-fabricate hydrogels.


Subject(s)
Hydrogels/chemistry , Biological Products , Cold Temperature
10.
ACS Appl Mater Interfaces ; 10(19): 16250-16259, 2018 May 16.
Article in English | MEDLINE | ID: mdl-29693369

ABSTRACT

Commensal skin bacteria such as Staphylococcus epidermidis are currently being considered as possible components in skin-care and skin-health products. However, considering the potentially adverse effects of commensal skin bacteria if left free to proliferate, it is crucial to develop methodologies that are capable of maintaining bacteria viability while controlling their proliferation. Here, we encapsulate S. epidermidis in shells of increasing thickness using layer-by-layer assembly, with either a pair of synthetic polyelectrolytes or a pair of oppositely charged polysaccharides. We study the viability of the cells and their delay of growth depending on the composition of the shell, its thickness, the charge of the last deposited layer, and the degree of aggregation of the bacteria which is varied using different coating procedures-among which is a new scalable process that easily leads to large amounts of nonaggregated bacteria. We demonstrate that the growth of bacteria is not controlled by the mechanical properties of the shell but by the bacteriostatic effect of the polyelectrolyte complex, which depends on the shell thickness and charge of its outmost layer, and involves the diffusion of unpaired amine sites through the shell. The lag times of growth are sufficient to prevent proliferation for daily topical applications.


Subject(s)
Staphylococcus epidermidis , Microbial Viability
11.
ACS Appl Mater Interfaces ; 10(16): 13953-13962, 2018 Apr 25.
Article in English | MEDLINE | ID: mdl-29557171

ABSTRACT

Highly conductive elastic composites were constructed using multistep solution-based fabrication methods that included the deposition of a nonwoven polymer fiber mat through solution blow spinning and nanoparticle nucleation. High nanoparticle loading was achieved by introducing silver nanoparticles into the fiber spinning solution. The presence of the silver nanoparticles facilitates improved uptake of silver nanoparticle precursor in subsequent processing steps. The precursor is used to generate a second nanoparticle population, leading to high loading and conductivity. Establishing high nanoparticle loading in a microfibrous block copolymer network generated deformable composites that can sustain electrical conductivities reaching 9000 S/cm under 100% tensile strain. These conductive elastic fabrics can retain at least 70% of their initial electrical conductivity after being stretched to 100% strain and released for 500 cycles. This composite material system has the potential to be implemented in wearable electronics and robotic systems.


Subject(s)
Elasticity , Electric Conductivity , Metal Nanoparticles , Polymers , Silver
12.
Adv Mater ; 30(18): e1706356, 2018 May.
Article in English | MEDLINE | ID: mdl-29468747

ABSTRACT

Approximately 1.7 million new cases of cancer will be diagnosed this year in the United States leading to 600 000 deaths. Patient survival rates are highly correlated with the stage of cancer diagnosis, with localized and regional remission rates that are much higher than for metastatic cancer. The current standard of care for many solid tumors includes imaging and biopsy with histological assessment. In many cases, after tomographical imaging modalities have identified abnormal morphology consistent with cancer, surgery is performed to remove the primary tumor and evaluate the surrounding lymph nodes. Accurate identification of tumor margins and staging are critical for selecting optimal treatments to minimize recurrence. Visible, fluorescent, and radiolabeled small molecules have been used as contrast agents to improve detection during real-time intraoperative imaging. Unfortunately, current dyes lack the tissue specificity, stability, and signal penetration needed for optimal performance. Quantum dots (QDs) represent an exciting class of fluorescent probes for optical imaging with tunable optical properties, high stability, and the ability to target tumors or lymph nodes based on surface functionalization. Here, state-of-the-art biocompatible QDs are compared with current Food and Drug Administration approved fluorophores used in cancer imaging and a perspective on the pathway to clinical translation is provided.


Subject(s)
Quantum Dots , Fluorescent Dyes , Humans , Lymph Nodes , Neoplasms , Semiconductors
13.
J Biomed Mater Res B Appl Biomater ; 106(5): 1662-1671, 2018 07.
Article in English | MEDLINE | ID: mdl-28842967

ABSTRACT

Hemorrhage is the leading cause of preventable death after a traumatic injury, and the largest contributor to loss of productive years of life. Hemostatic agents accelerate hemostasis and help control hemorrhage by concentrating coagulation factors, acting as procoagulants and/or interacting with erythrocytes and platelets. Hydrogel composites offer a platform for targeting both mechanical and biological hemostatic mechanisms. The goal of this work was to develop hydrogel particles composed of chitosan, alginate, and zeolite, and to assess their potential to promote blood coagulation via multiple mechanisms: erythrocyte adhesion, factor concentration, and the ability to serve as a mechanical barrier to blood loss. Several particle compositions were synthesized and characterized. Hydrogel bead composition was optimized to achieve the highest swelling capacity, greatest erythrocyte adhesion, and minimal in vitro cytotoxicity. These results suggest a polymer hydrogel-aluminosilicate composite material may serve as a platform for an effective hemostatic agent that incorporates multiple mechanisms of action. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 1662-1671, 2018.


Subject(s)
Alginates , Blood Coagulation/drug effects , Blood Platelets/metabolism , Chitosan , Erythrocytes/metabolism , Hemostatics , Zeolites , Alginates/chemistry , Alginates/pharmacokinetics , Alginates/pharmacology , Animals , Blood Platelets/pathology , Cell Line , Chitosan/chemistry , Chitosan/pharmacokinetics , Chitosan/pharmacology , Erythrocytes/pathology , Hemorrhage/drug therapy , Hemorrhage/metabolism , Hemorrhage/pathology , Hemostatics/chemistry , Hemostatics/pharmacokinetics , Hemostatics/pharmacology , Humans , Mice , Zeolites/chemistry , Zeolites/pharmacokinetics , Zeolites/pharmacology
14.
Science ; 357(6356): 1138-1142, 2017 09 15.
Article in English | MEDLINE | ID: mdl-28912242

ABSTRACT

Three-dimensional (3D) microstructures created by microfabrication and additive manufacturing have demonstrated value across a number of fields, ranging from biomedicine to microelectronics. However, the techniques used to create these devices each have their own characteristic set of advantages and limitations with regards to resolution, material compatibility, and geometrical constraints that determine the types of microstructures that can be formed. We describe a microfabrication method, termed StampEd Assembly of polymer Layers (SEAL), and create injectable pulsatile drug-delivery microparticles, pH sensors, and 3D microfluidic devices that we could not produce using traditional 3D printing. SEAL allows us to generate microstructures with complex geometry at high resolution, produce fully enclosed internal cavities containing a solid or liquid, and use potentially any thermoplastic material without processing additives.

15.
J Pediatr Surg ; 52(8): 1308-1312, 2017 Aug.
Article in English | MEDLINE | ID: mdl-27956071

ABSTRACT

BACKGROUND: Solution blow spinning is a technique for depositing polymer fibers with promising potential use as a surgical sealant. This study assessed the feasibility and efficacy of solution blow spun polymer (BSP) for sealing bowel perforations in a mouse model of partial cecal transection. We then evaluated its use for reinforcing a surgical anastomosis in a preclinical piglet model. METHODS: Three commercially available surgical sealants (fibrin glue, polyethylene glycol (PEG) hydrogel, and cyanoacrylate) were compared to BSP in the ability to seal partially transected cecum in mice. For anastomosis feasibility testing in a piglet model, piglets were subjected to small bowel transection with sutured anastomosis reinforced with BSP application. Outcome measures included anastomotic burst pressure, anastomotic leak rate, 14-day survival, and complication rate. RESULTS: For the mouse model, the survival rates for the sealants were 30% for fibrin glue, 20% for PEG hydrogel, 78% for cyanoacrylate, and 67% for BSP. Three of 9 mice died after BSP administration because of perforation leak, failure to thrive with partial obstruction at the perforation site, and unknown causes. All other mice died of perforation leak. The mean burst pressure at 24h was significantly higher for BSP (81mm Hg) when compared to fibrin glue (6mm Hg, p=0.047) or PEG hydrogel (10mm Hg, p=0.047), and comparable to cyanoacrylate (64mm Hg, p=0.91). For piglets, 4 of 4 animals survived at 14days. Mean burst pressures at time of surgery were 37±5mm Hg for BSP and 11±9mm Hg for suture-only controls (p=0.09). CONCLUSIONS: Solution blow spinning may be an effective technique as an adjunct for sealing of gastrointestinal anastomosis. Further preclinical testing is warranted to better understand BSP properties and alternative surgical applications.


Subject(s)
Anastomotic Leak/prevention & control , Biocompatible Materials/administration & dosage , Cecum/surgery , Digestive System Surgical Procedures/methods , Polymers/administration & dosage , Tissue Adhesives/administration & dosage , Anastomosis, Surgical/methods , Animals , Disease Models, Animal , Feasibility Studies , Female , Mice , Mice, Inbred C57BL , Swine
16.
ACS Appl Mater Interfaces ; 8(51): 34951-34963, 2016 Dec 28.
Article in English | MEDLINE | ID: mdl-27966857

ABSTRACT

Solution blow spinning (SBS) is a technique that can be used to deposit fibers in situ at low cost for a variety of applications, which include biomedical materials and flexible electronics. This review is intended to provide an overview of the basic principles and applications of SBS. We first describe a method for creating a spinnable polymer solution and stable polymer solution jet by manipulating parameters such as polymer concentration and gas pressure. This method is based on fundamental insights, theoretical models, and empirical studies. We then discuss the unique bundled morphology and mechanical properties of fiber mats produced by SBS, and how they compare with electrospun fiber mats. Applications of SBS in biomedical engineering are highlighted, showing enhanced cell infiltration and proliferation versus electrospun fiber scaffolds and in situ deposition of biodegradable polymers. We also discuss the impact of SBS in applications involving textiles and electronics, including ceramic fibers and conductive composite materials. Strategies for future research are presented that take advantage of direct and rapid polymer deposition via cost-effective methods.

17.
Biomed Mater ; 11(3): 035001, 2016 04 28.
Article in English | MEDLINE | ID: mdl-27121660

ABSTRACT

Polymer nanofiber based materials have been widely investigated for use as tissue engineering scaffolds. While promising, these materials are typically fabricated through techniques that require significant time or cost. Here we report a rapid and cost effective air-brushing method for fabricating nanofiber scaffolds using a simple handheld apparatus, compressed air, and a polymer solution. Air-brushing also facilities control over the scaffold degradation rate without adversely impacting architecture. This was accomplished through a one step blending process of high (M w ≈ 100 000 g mol(-1)) and low (M w ≈ 25 000 g mol(-1)) molecular weight poly(DL-lactide) (PDLLA) polymers at various ratios (100:0, 70:30 and 50:50). Through this approach, we were able to control fiber scaffold degradation rate while maintaining similar fiber morphology, scaffold porosity, and bulk mechanical properties across all of the tested compositions. The impact of altered degradation rates was biologically evaluated in human bone marrow stromal cell (hBMSC) cultures for up to 16 days and demonstrated degradation rate dependence of both total DNA concentration and gene regulation.


Subject(s)
Polyesters/chemistry , Tissue Engineering/methods , Tissue Scaffolds , Adult , Biocompatible Materials/chemistry , DNA/chemistry , Humans , Male , Materials Testing , Mesenchymal Stem Cells/cytology , Nanofibers/chemistry , Polymers , Porosity , Stress, Mechanical
18.
Adv Mater ; 27(48): 8056-61, 2015 Dec 22.
Article in English | MEDLINE | ID: mdl-26554545

ABSTRACT

The development of practical and efficient surgical sealants has the propensity to improve operational outcomes. A biodegradable polymer blend is fabricated as a nonwoven fiber mat in situ. After direct deposition onto the tissue of interest, the material transitions from a fiber mat to a film. This transition promotes polymer-substrate interfacial interactions leading to improved adhesion and surgical sealant performance.


Subject(s)
Adhesives/pharmacology , Biocompatible Materials/pharmacology , Body Temperature , Polymers/pharmacology , Surgical Equipment , Adhesives/chemistry , Adhesives/metabolism , Animals , Biocompatible Materials/chemistry , Biocompatible Materials/metabolism , Lactic Acid/chemistry , Mice , Polyethylene Glycols/chemistry , Polyglycolic Acid/chemistry , Polylactic Acid-Polyglycolic Acid Copolymer , Polymers/chemistry , Polymers/metabolism
19.
Mol Genet Metab ; 115(2-3): 95-100, 2015.
Article in English | MEDLINE | ID: mdl-25936660

ABSTRACT

Quantification of ammonia in whole blood has applications in the diagnosis and management of many hepatic diseases, including cirrhosis and rare urea cycle disorders, amounting to more than 5 million patients in the United States. Current techniques for ammonia measurement suffer from limited range, poor resolution, false positives or large, complex sensor set-ups. Here we demonstrate a technique utilizing inexpensive reagents and simple methods for quantifying ammonia in 100 µL of whole blood. The sensor comprises a modified form of the indophenol reaction, which resists sources of destructive interference in blood, in conjunction with a cation-exchange membrane. The presented sensing scheme is selective against other amine containing molecules such as amino acids and has a shelf life of at least 50 days. Additionally, the resulting system has high sensitivity and allows for the accurate reliable quantification of ammonia in whole human blood samples at a minimum range of 25 to 500 µM, which is clinically for rare hyperammonemic disorders and liver disease. Furthermore, concentrations of 50 and 100 µM ammonia could be reliably discerned with p = 0.0001.


Subject(s)
Ammonia/blood , Blood Chemical Analysis/methods , Ammonia/chemistry , Humans , Hyperammonemia/blood , Indophenol/chemistry
20.
ACS Nano ; 9(1): 336-44, 2015 Jan 27.
Article in English | MEDLINE | ID: mdl-25491507

ABSTRACT

Block copolymer silver nanoparticle composite elastic conductors were fabricated through solution blow spinning and subsequent nanoparticle nucleation. The reported technique allows for conformal deposition onto nonplanar substrates. We additionally demonstrated the ability to tune the strain dependence of the electrical properties by adjusting nanoparticle precursor concentration or localized nanoparticle nucleation. The stretchable fiber mats were able to display electrical conductivity values as high as 2000 ± 200 S/cm with only a 12% increase in resistance after 400 cycles of 150% strain. Stretchable elastic conductors with similar and higher bulk conductivity have not achieved comparable stability of electrical properties. These unique electromechanical characteristics are primarily the result of structural changes during mechanical deformation. The versatility of this approach was demonstrated by constructing a stretchable light emitting diode circuit and a strain sensor on planar and nonplanar substrates.


Subject(s)
Butadienes/chemistry , Elasticity , Electric Conductivity , Metal Nanoparticles/chemistry , Nanocomposites/chemistry , Nanotechnology , Pentanes/chemistry , Polystyrenes/chemistry , Silver/chemistry , Stress, Mechanical
SELECTION OF CITATIONS
SEARCH DETAIL
...