Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
Front Immunol ; 14: 1291292, 2023.
Article in English | MEDLINE | ID: mdl-38094289

ABSTRACT

Humans lack the enzyme that produces the sialic acid N-glycolyl neuraminic acid (Neu5Gc), but several lines of evidence have shown that Neu5Gc can be taken up by mammalian food sources and replace the common human sialic acid N-acetyl neuraminic acid (Neu5Ac) in glycans. Cancer tissue has been shown to have increased the presence of Neu5Gc and Neu5Gc-containing glycolipids such as the ganglioside GM3, which have been proposed as tumor-specific antigens for antibody treatment. Here, we show that a previously described antibody against Neu5Gc-GM3 is binding to Neu5GC-containing gangliosides and is strongly staining different cancer tissues. However, we also found a strong intracellular staining of keratinocytes of healthy skin. We confirmed this staining on freshly isolated keratinocytes by flow cytometry and detected Neu5Gc by mass spectrometry. This finding implicates that non-human Neu5Gc can be incorporated into gangliosides in human skin, and this should be taken into consideration when targeting Neu5Gc-containing gangliosides for cancer immunotherapy.


Subject(s)
Neoplasms , Humans , Antigens, Neoplasm , G(M3) Ganglioside/chemistry , Glycolipids , N-Acetylneuraminic Acid/metabolism , Neuraminic Acids/metabolism , Skin/chemistry , Skin/metabolism
2.
Sci Rep ; 12(1): 15763, 2022 09 21.
Article in English | MEDLINE | ID: mdl-36131114

ABSTRACT

Serum N-glycan profiling studies during the past decades have shown robust associations between N-glycan changes and various biological conditions, including infections, in humans. Similar studies are scarcer for other mammals, despite the tremendous potential of serum N-glycans as biomarkers for infectious diseases in animal models of human disease and in the veterinary context. To expand the knowledge of serum N-glycan profiles in important mammalian model systems, in this study, we combined MALDI-TOF-MS analysis and HILIC-UPLC profiling of released N-glycans together with glycosidase treatments to characterize the glycan structures present in rhesus macaque serum. We used this baseline to monitor changes in serum N-glycans during infection with Brugia malayi, a parasitic nematode of humans responsible for lymphatic filariasis, in a longitudinal cohort of infected rhesus macaques. Alterations of the HILIC-UPLC profile, notably of abundant structures, became evident as early as 5 weeks post-infection. Given its prominent role in the immune response, contribution of immunoglobulin G to serum N-glycans was investigated. Finally, comparison with similar N-glycan profiling performed during infection with the dog heartworm Dirofilaria immitis suggests that many changes observed in rhesus macaque serum N-glycans are specific for lymphatic filariasis.


Subject(s)
Brugia malayi , Dirofilaria immitis , Elephantiasis, Filarial , Animals , Biomarkers , Dirofilaria immitis/physiology , Dogs , Elephantiasis, Filarial/parasitology , Glycoside Hydrolases , Humans , Immunoglobulin G , Macaca mulatta , Mammals , Polysaccharides
3.
Anal Bioanal Chem ; 413(29): 7277-7294, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34342671

ABSTRACT

Structural determination of N-glycans by mass spectrometry is ideally performed by negative ion collision-induced dissociation because the spectra are dominated by cross-ring fragments leading to ions that reveal structural details not available by many other methods. Most glycans form [M - H]- or [M + adduct]- ions but larger ones (above approx. m/z 2000) typically form doubly charged ions. Differences have been reported between the fragmentation of singly and doubly charged ions but a detailed comparison does not appear to have been reported. In addition to [M + adduct]- ions (this paper uses phosphate as the adduct) other doubly, triply, and quadruply charged ions of composition [Mn + (H2PO4)n]n- have been observed in mixtures of N-glycans released from viral and other glycoproteins. This paper explores the formation and fragmentation of these different types of multiply charged ions with particular reference to the presence of diagnostic fragments in the CID spectra and comments on how these ions can be used to characterize these glycans.


Subject(s)
Glycoproteins/chemistry , Polysaccharides/analysis , Polysaccharides/chemistry , Ion Mobility Spectrometry/methods , Ions , Spectrometry, Mass, Electrospray Ionization/methods , ortho-Aminobenzoates/chemistry
4.
Anal Bioanal Chem ; 413(29): 7229-7240, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34327564

ABSTRACT

Negative ion collision-induced dissociation (CID) of underivatized N-glycans has proved to be a simple, yet powerful method for their structural determination. Recently, we have identified a series of such structures with GalNAc rather than the more common galactose capping the antennae of hybrid and complex glycans. As part of a series of publications describing the negative ion fragmentation of different types of N-glycan, this paper describes their CID spectra and estimated nitrogen cross sections recorded by travelling wave ion mobility mass spectrometry (TWIMS). Most of the glycans were derived from the recombinant glycoproteins gp120 and gp41 from the human immunodeficiency virus (HIV), recombinantly derived from human embryonic kidney (HEK 293T) cells. Twenty-six GalNAc-capped hybrid and complex N-glycans were identified by a combination of TWIMS, negative ion CID, and exoglycosidase digestions. They were present as the neutral glycans and their sulfated and α2→3-linked sialylated analogues. Overall, negative ion fragmentation of glycans generates fingerprints that reveal their structural identity.


Subject(s)
Glycoproteins/chemistry , Ion Mobility Spectrometry/methods , Polysaccharides/analysis , Polysaccharides/chemistry , Acetylgalactosamine/chemistry , Glycoproteins/genetics , HEK293 Cells , HIV Envelope Protein gp120/chemistry , HIV Envelope Protein gp120/genetics , HIV Envelope Protein gp41/chemistry , HIV Envelope Protein gp41/genetics , Humans , Nitrogen/chemistry , Protein Multimerization , Recombinant Proteins/genetics , Spectrometry, Mass, Electrospray Ionization
5.
J Virol ; 94(24)2020 11 23.
Article in English | MEDLINE | ID: mdl-32999024

ABSTRACT

The induction of broadly neutralizing antibodies (bNAbs) is a major goal in vaccine research. HIV-1-infected individuals that develop exceptionally strong bNAb responses, termed elite neutralizers, can inform vaccine design by providing blueprints for the induction of similar bNAb responses. We describe a new recombinant native-like envelope glycoprotein (Env) SOSIP trimer, termed AMC009, based on the viral founder sequences of an elite neutralizer. The subtype B AMC009 SOSIP protein formed stable native-like trimers that displayed multiple bNAb epitopes. Overall, its structure at 4.3-Å resolution was similar to that of BG505 SOSIP.664. The AMC009 trimer resembled one from a second elite neutralizer, AMC011, in having a dense and complete glycan shield. When tested as immunogens in rabbits, the AMC009 trimers did not induce autologous neutralizing antibody (NAb) responses efficiently while the AMC011 trimers did so very weakly, outcomes that may reflect the completeness of their glycan shields. The AMC011 trimer induced antibodies that occasionally cross-neutralized heterologous tier 2 viruses, sometimes at high titer. Cross-neutralizing antibodies were more frequently elicited by a trivalent combination of AMC008, AMC009, and AMC011 trimers, all derived from subtype B viruses. Each of these three individual trimers could deplete the NAb activity from the rabbit sera. Mapping the polyclonal sera by electron microscopy revealed that antibodies of multiple specificities could bind to sites on both autologous and heterologous trimers. These results advance our understanding of how to use Env trimers in multivalent vaccination regimens and the immunogenicity of trimers derived from elite neutralizers.IMPORTANCE Elite neutralizers, i.e., individuals who developed unusually broad and potent neutralizing antibody responses, might serve as blueprints for HIV-1 vaccine design. Here, we studied the immunogenicity of native-like recombinant envelope glycoprotein (Env) trimers based on viral sequences from elite neutralizers. While immunization with single trimers from elite neutralization did not recapitulate the breadth and potency of neutralization observed in these infected individuals, a combination of three subtype B Env trimers from elite neutralizers resulted in some neutralization breadth within subtype B viruses. These results should guide future efforts to design vaccines to induce broadly neutralizing antibodies.


Subject(s)
Antibodies, Neutralizing/immunology , Antigens, Viral/immunology , HIV Antibodies/immunology , HIV Infections/immunology , HIV-1/immunology , env Gene Products, Human Immunodeficiency Virus/immunology , AIDS Vaccines/immunology , Animals , Antibodies, Neutralizing/chemistry , Antigens, Viral/chemistry , Cryoelectron Microscopy , Epitopes/immunology , Glycoproteins , HIV Infections/virology , Immunization , Rabbits , Recombinant Proteins/immunology , env Gene Products, Human Immunodeficiency Virus/genetics
6.
Structure ; 28(8): 897-909.e6, 2020 08 04.
Article in English | MEDLINE | ID: mdl-32433992

ABSTRACT

Numerous broadly neutralizing antibodies (bnAbs) have been identified that target the glycans of the HIV-1 envelope spike. Neutralization breadth is notable given that glycan processing can be substantially influenced by the presence or absence of neighboring glycans. Here, using a stabilized recombinant envelope trimer, we investigate the degree to which mutations in the glycan network surrounding an epitope impact the fine glycan processing of antibody targets. Using cryo-electron microscopy and site-specific glycan analysis, we reveal the importance of glycans in the formation of the 2G12 bnAb epitope and show that the epitope is only subtly impacted by variations in the glycan network. In contrast, we show that the PG9 and PG16 glycan-based epitopes at the trimer apex are dependent on the presence of the highly conserved surrounding glycans. Glycan networks underpin the conservation of bnAb epitopes and are an important parameter in immunogen design.


Subject(s)
Epitopes/chemistry , HIV-1/immunology , Polysaccharides/chemistry , env Gene Products, Human Immunodeficiency Virus/chemistry , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/immunology , Antigen-Antibody Complex/chemistry , Broadly Neutralizing Antibodies/chemistry , Broadly Neutralizing Antibodies/immunology , Epitopes/genetics , Epitopes/immunology , HEK293 Cells , HIV Antibodies/chemistry , HIV Antibodies/immunology , Humans , Molecular Docking Simulation , Mutation , Polysaccharides/immunology , env Gene Products, Human Immunodeficiency Virus/genetics , env Gene Products, Human Immunodeficiency Virus/immunology
7.
Nat Commun ; 10(1): 4272, 2019 09 19.
Article in English | MEDLINE | ID: mdl-31537780

ABSTRACT

The development of native-like HIV-1 envelope (Env) trimer antigens has enabled the induction of neutralizing antibody (NAb) responses against neutralization-resistant HIV-1 strains in animal models. However, NAb responses are relatively weak and narrow in specificity. Displaying antigens in a multivalent fashion on nanoparticles (NPs) is an established strategy to increase their immunogenicity. Here we present the design and characterization of two-component protein NPs displaying 20 stabilized SOSIP trimers from various HIV-1 strains. The two-component nature permits the incorporation of exclusively well-folded, native-like Env trimers into NPs that self-assemble in vitro with high efficiency. Immunization studies show that the NPs are particularly efficacious as priming immunogens, improve the quality of the Ab response over a conventional one-component nanoparticle system, and are most effective when SOSIP trimers with an apex-proximate neutralizing epitope are displayed. Their ability to enhance and shape the immunogenicity of SOSIP trimers make these NPs a promising immunogen platform.


Subject(s)
Antibodies, Neutralizing/immunology , Antigens, Viral/immunology , HIV Antibodies/immunology , HIV-1/immunology , env Gene Products, Human Immunodeficiency Virus/immunology , AIDS Vaccines/immunology , Animals , Antigens, Viral/biosynthesis , Cell Line , Epitopes/immunology , HEK293 Cells , Humans , Molecular Docking Simulation , Nanoparticles , Protein Multimerization/immunology , Protein Structure, Tertiary , Rabbits
8.
Nat Commun ; 10(1): 2355, 2019 05 29.
Article in English | MEDLINE | ID: mdl-31142746

ABSTRACT

Stabilized HIV-1 envelope glycoproteins (Env) that resemble the native Env are utilized in vaccination strategies aimed at inducing broadly neutralizing antibodies (bNAbs). To limit the exposure of rare isolate-specific antigenic residues/determinants we generated a SOSIP trimer based on a consensus sequence of all HIV-1 group M isolates (ConM). The ConM trimer displays the epitopes of most known bNAbs and several germline bNAb precursors. The crystal structure of the ConM trimer at 3.9 Å resolution resembles that of the native Env trimer and its antigenic surface displays few rare residues. The ConM trimer elicits strong NAb responses against the autologous virus in rabbits and macaques that are significantly enhanced when it is presented on ferritin nanoparticles. The dominant NAb specificity is directed against an epitope at or close to the trimer apex. Immunogens based on consensus sequences might have utility in engineering vaccines against HIV-1 and other viruses.


Subject(s)
AIDS Vaccines/immunology , Antibodies, Neutralizing/immunology , Epitopes/immunology , HIV Antibodies/immunology , HIV-1/immunology , env Gene Products, Human Immunodeficiency Virus/immunology , Animals , Consensus Sequence , Macaca , Protein Multimerization , Rabbits
9.
Sci Rep ; 8(1): 16625, 2018 11 09.
Article in English | MEDLINE | ID: mdl-30413744

ABSTRACT

Filariases are diseases caused by infection with filarial nematodes and transmitted by insect vectors. The filarial roundworm Dirofilaria immitis causes heartworm disease in dogs and other carnivores. D. immitis is closely related to Onchocerca volvulus, Wuchereria bancrofti and Brugia malayi, which cause onchocerciasis (river blindness) and lymphatic filariasis (elephantiasis) in humans and are neglected tropical diseases. Serum N-glycosylation is very sensitive to both pathological infections and changes in mammalian biology due to normal aging or lifestyle choices. Here, we report significant changes in the serum N-glycosylation profiles of dogs infected with D. immitis. Our data derive from analysis of serum from dogs with established patent infections and from a longitudinal infection study. Overall, galactosylation and core fucosylation increase, while sialylation decreases in infected dog sera. We also identify individual glycan structures that change significantly in their relative abundance during infection. Notably, the abundance of the most dominant N-glycan in canine serum (biantennary, disialylated A2G2S2) decreases by over 10 percentage points during the first 6 months of infection in each dog analyzed. This is the first longitudinal study linking changes in mammalian serum N-glycome to progression of a parasitic infection.


Subject(s)
Dirofilaria immitis/physiology , Dirofilariasis/metabolism , Dog Diseases/metabolism , Dogs/parasitology , Helminth Proteins/metabolism , Insect Vectors/physiology , Polysaccharides/blood , Animals , Dirofilariasis/parasitology , Dirofilariasis/transmission , Dog Diseases/parasitology , Dog Diseases/transmission , Glycosylation , Longitudinal Studies
10.
Glycobiology ; 28(11): 825-831, 2018 11 01.
Article in English | MEDLINE | ID: mdl-30137320

ABSTRACT

Glycosylation is the most common post-translational modification of serum proteins, and changes in the type and abundance of glycans in human serum have been correlated with a growing number of human diseases. While the glycosylation pattern of human serum is well studied, little is known about the profiles of other mammalian species. Here, we report detailed glycosylation profiling of canine serum by hydrophilic interaction chromatography-ultraperformance liquid chromatography (HILIC-UPLC) and mass spectrometry. The domestic dog (Canis familiaris) is a widely used model organism and of considerable interest for a large veterinary community. We found significant differences in the serum N-glycosylation profile of dogs compared to that of humans, such as a lower abundance of galactosylated and sialylated glycans. We also compare the N-glycan profile of canine serum to that of canine IgG - the most abundant serum glycoprotein. Our data will serve as a baseline reference for future studies when performing serum analyses of various health and disease states in dogs.


Subject(s)
Glycoproteins/metabolism , Polysaccharides/metabolism , Animals , Dogs , Glycoproteins/blood , Glycosylation , Humans , Polysaccharides/blood
11.
Front Immunol ; 9: 1631, 2018.
Article in English | MEDLINE | ID: mdl-30065725

ABSTRACT

Soluble HIV-1 envelope glycoprotein (Env) trimers are under active investigation as vaccine candidates in relevant pre-clinical models. Like SOSIPs, the cleavage-independent native flexibly linked (NFL) trimers are faithful mimics of the Env spike. Here, we analyzed multiple new designs to explore alternative modifications, informing tertiary interactions, while maintaining NFL trimer homogeneity and integrity. Accordingly, we performed a proline (P) substitution screen in the gp41 heptad repeat 1 region, identifying other trimer-enhancing Ps, including L555P. This P improved trimer integrity compared to I559P in selected properties. Next, we screened 15 structure-guided potential cysteine pairs in gp140 and found that A501C-L663C ("CC2") forms an inter-protomer disulfide bond that demonstrably increased NFL trimer thermostability. We combined these two approaches with trimer-derived substitutions, coupled with glycine substitutions at helix-to-coil transitions, developed by our group. To increase the exposure of the fusion peptide (FP) N-terminus, we engineered an enterokinase (EK) cleavage site upstream of the FP for controlled post-expression cleavage. In combination, the redesigns resulted in highly stable and homogeneous NFL mimics derived from different clades. Following recombinant EK cleavage, the NFL trimers retained covalent linkage, maintaining a native-like structure while displaying enhanced stability and favorable antigenic features. These trimers also displayed increased exposure of neutralizing epitopes in the FP and gp120/gp41 interface, while retaining other neutralizing epitopes and occluding non-neutralizing elements. This array of Env-structure-guided designs reveals additional interactive regions in the prefusion state of the HIV Env spike, affording the development of novel antigens and immunogens.

12.
Front Immunol ; 9: 1116, 2018.
Article in English | MEDLINE | ID: mdl-29881382

ABSTRACT

Native flexibly linked (NFL) HIV-1 envelope glycoprotein (Env) trimers are cleavage-independent and display a native-like, well-folded conformation that preferentially displays broadly neutralizing determinants. The NFL platform simplifies large-scale production of Env by eliminating the need to co-transfect the precursor-cleaving protease, furin that is required by the cleavage-dependent SOSIP trimers. Here, we report the development of a CHO-M cell line that expressed BG505 NFL trimers at a high level of homogeneity and yields of ~1.8 g/l. BG505 NFL trimers purified by single-step lectin-affinity chromatography displayed a native-like closed structure, efficient recognition by trimer-preferring bNAbs, no recognition by non-neutralizing CD4 binding site-directed and V3-directed antibodies, long-term stability, and proper N-glycan processing. Following negative-selection, formulation in ISCOMATRIX adjuvant and inoculation into rabbits, the trimers rapidly elicited potent autologous tier 2 neutralizing antibodies. These antibodies targeted the N-glycan "hole" naturally present on the BG505 Env proximal to residues at positions 230, 241, and 289. The BG505 NFL trimers that did not expose V3 in vitro, elicited low-to-no tier 1 virus neutralization in vivo, indicating that they remained intact during the immunization process, not exposing V3. In addition, BG505 NFL and BG505 SOSIP trimers expressed from 293F cells, when formulated in Adjuplex adjuvant, elicited equivalent BG505 tier 2 autologous neutralizing titers. These titers were lower in potency when compared to the titers elicited by CHO-M cell derived trimers. In addition, increased neutralization of tier 1 viruses was detected. Taken together, these data indicate that both adjuvant and cell-type expression can affect the elicitation of tier 2 and tier 1 neutralizing responses in vivo.


Subject(s)
Antibodies, Neutralizing/immunology , HIV-1/immunology , Protein Multimerization , env Gene Products, Human Immunodeficiency Virus/immunology , Animals , CHO Cells , Cell Line , Chromatography, Affinity , Chromatography, High Pressure Liquid , Cricetulus , Enzyme-Linked Immunosorbent Assay , Gene Expression , Glycosylation , HIV Infections/immunology , HIV Infections/virology , HIV-1/genetics , Humans , Immunization , Models, Molecular , Proteolysis , env Gene Products, Human Immunodeficiency Virus/chemistry , env Gene Products, Human Immunodeficiency Virus/genetics , env Gene Products, Human Immunodeficiency Virus/isolation & purification
13.
Nat Commun ; 9(1): 1956, 2018 05 16.
Article in English | MEDLINE | ID: mdl-29769533

ABSTRACT

Furin cleavage of the HIV envelope glycoprotein is an essential step for cell entry that enables formation of well-folded, native-like glycosylated trimers, releases constraints on the fusion peptide, and limits enzymatic processing of the N-glycan shield. Here, we show that a cleavage-independent, stabilized, soluble Env trimer mimic (BG505 NFL.664) exhibits a "closed-form", native-like, prefusion conformation akin to furin-cleaved Env trimers. The crystal structure of BG505 NFL.664 at 3.39 Å resolution with two potent bNAbs also identifies the full epitopes of PGV19 and PGT122 that target the receptor binding site and N332 supersite, respectively. Quantitative site-specific analysis of the glycan shield reveals that native-like glycan processing is maintained despite furin-independent maturation in the secretory pathway. Thus, cleavage-independent NFL Env trimers exhibit quaternary protein and carbohydrate structures similar to the native viral spike that further validate their potential as vaccine immunogen candidates.


Subject(s)
Glycoproteins/chemistry , Protein Multimerization , Protein Structure, Quaternary , env Gene Products, Human Immunodeficiency Virus/chemistry , Antibodies, Neutralizing/chemistry , Antibodies, Neutralizing/metabolism , Binding Sites , Crystallography, X-Ray , Epitopes/chemistry , Glycoproteins/metabolism , Glycosylation , HIV Antibodies/chemistry , HIV Antibodies/metabolism , HIV-1/immunology , HIV-1/metabolism , Humans , Models, Molecular , Protein Binding , env Gene Products, Human Immunodeficiency Virus/immunology , env Gene Products, Human Immunodeficiency Virus/metabolism
14.
J Proteome Res ; 17(3): 987-999, 2018 03 02.
Article in English | MEDLINE | ID: mdl-29420040

ABSTRACT

Broadly neutralizing antibodies (bNAbs) that target the trimeric HIV-1 envelope glycoprotein spike (Env) are tools that can guide the design of recombinant Env proteins intended to engage the predicted human germline precursors of bNAbs (gl-bNAbs). The protein components of gl-bNAb epitopes are often masked by glycans, while mature bNAbs can evolve to accommodate or bypass these shielding glycans. The design of germline-targeting Env immunogens therefore includes the targeted deletion of specific glycan sites. However, the processing of glycans on Env trimers can be influenced by the density with which they are packed together, a highly relevant point given the essential contributions under-processed glycans make to multiple bNAb epitopes. We sought to determine the impact of the removal of 15 potential N-glycan sites (5 per protomer) from the germline-targeting soluble trimer, BG505 SOSIP.v4.1-GT1, using quantitative, site-specific N-glycan mass spectrometry analysis. We find that, compared with SOSIP.664, there was little overall change in the glycan profile but only subtle increases in the extent of processing at sites immediately adjacent to where glycans had been deleted. We conclude that multiple glycans can be deleted from BG505 SOSIP trimers without perturbing the overall integrity of the glycan shield.


Subject(s)
Antibodies, Neutralizing/chemistry , Epitopes/chemistry , HIV Antibodies/chemistry , HIV-1/metabolism , Polysaccharides/chemistry , Protein Processing, Post-Translational , env Gene Products, Human Immunodeficiency Virus/chemistry , Amino Acid Motifs , Animals , Antibodies, Neutralizing/genetics , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/metabolism , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Binding Sites , CHO Cells , Carbohydrate Sequence , Cell Lineage/immunology , Cricetulus , Epitopes/genetics , Epitopes/immunology , Epitopes/metabolism , Gene Expression , Glycosylation , HIV Antibodies/genetics , HIV Antibodies/immunology , HIV Antibodies/metabolism , HIV-1/genetics , HIV-1/immunology , Polysaccharides/immunology , Polysaccharides/metabolism , Promoter Regions, Genetic , Protein Binding , Protein Interaction Domains and Motifs , Protein Multimerization , Protein Structure, Secondary , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Recombinant Proteins/metabolism , Spectrometry, Mass, Electrospray Ionization , env Gene Products, Human Immunodeficiency Virus/genetics , env Gene Products, Human Immunodeficiency Virus/immunology , env Gene Products, Human Immunodeficiency Virus/metabolism
15.
Biotechnol Bioeng ; 115(4): 885-899, 2018 04.
Article in English | MEDLINE | ID: mdl-29150937

ABSTRACT

We describe the properties of BG505 SOSIP.664 HIV-1 envelope glycoprotein trimers produced under current Good Manufacturing Practice (cGMP) conditions. These proteins are the first of a new generation of native-like trimers that are the basis for many structure-guided immunogen development programs aimed at devising how to induce broadly neutralizing antibodies (bNAbs) to HIV-1 by vaccination. The successful translation of this prototype demonstrates the feasibility of producing similar immunogens on an appropriate scale and of an acceptable quality for Phase I experimental medicine clinical trials. BG505 SOSIP.664 trimers are extensively glycosylated, contain numerous disulfide bonds and require proteolytic cleavage, all properties that pose a substantial challenge to cGMP production. Our strategy involved creating a stable CHO cell line that was adapted to serum-free culture conditions to produce envelope glycoproteins. The trimers were then purified by chromatographic methods using a 2G12 bNAb affinity column and size-exclusion chromatography. The chosen procedures allowed any adventitious viruses to be cleared from the final product to the required extent of >12 log10 . The final cGMP production run yielded 3.52 g (peptidic mass) of fully purified trimers (Drug Substance) from a 200 L bioreactor, a notable yield for such a complex glycoprotein. The purified trimers were fully native-like as judged by negative-stain electron microscopy, and were stable over a multi-month period at room temperature or below and for at least 1 week at 50°C. Their antigenicity, disulfide bond patterns, and glycan composition were consistent with trimers produced on a research laboratory scale. The methods reported here should pave the way for the cGMP production of other native-like Env glycoprotein trimers of various designs and genotypes.


Subject(s)
AIDS Vaccines/immunology , HIV Antibodies/immunology , HIV Infections/prevention & control , HIV-1/immunology , Viral Envelope Proteins/immunology , AIDS Vaccines/genetics , Animals , Antibodies, Neutralizing/immunology , CHO Cells , Cricetulus , Glycosylation , HIV Infections/virology , Humans , Protein Multimerization , Vaccines, Synthetic/genetics , Vaccines, Synthetic/immunology , Viral Envelope Proteins/genetics
16.
Expert Rev Proteomics ; 14(10): 881-890, 2017 10.
Article in English | MEDLINE | ID: mdl-28870097

ABSTRACT

INTRODUCTION: Much of the efforts to develop a vaccine against the human immunodeficiency virus (HIV) have focused on the design of recombinant mimics of the viral attachment glycoprotein (Env). The leading immunogens exhibit native-like antigenic properties and are being investigated for their ability to induce broadly neutralizing antibodies (bNAbs). Understanding the relative abundance of glycans at particular glycosylation sites on these immunogens is important as most bNAbs have evolved to recognize or evade the dense coat of glycans that masks much of the protein surface. Understanding the glycan structures on candidate immunogens enables triaging between native-like conformations and immunogens lacking key structural features as steric constraints limit glycan processing. The sensitivity of the processing state of a particular glycan to its structural environment has led to the need for quantitative glycan profiling and site-specific analysis to probe the structural integrity of immunogens. Areas covered: We review analytical methodologies for HIV immunogen evaluation and discuss how these studies have led to a greater understanding of the structural constraints that control the glycosylation state of the HIV attachment and fusion spike. Expert commentary: Total composition and site-specific glycosylation profiling are emerging as standard methods in the evaluation of Env-based immunogen candidates.


Subject(s)
AIDS Vaccines/immunology , Mass Spectrometry/methods , Polysaccharides/chemistry , env Gene Products, Human Immunodeficiency Virus/chemistry , AIDS Vaccines/chemistry , Glycosylation , Humans , env Gene Products, Human Immunodeficiency Virus/immunology
17.
Cell Rep ; 20(8): 1805-1817, 2017 Aug 22.
Article in English | MEDLINE | ID: mdl-28834745

ABSTRACT

The production of native-like recombinant versions of the HIV-1 envelope glycoprotein (Env) trimer requires overcoming the natural flexibility and instability of the complex. The engineered BG505 SOSIP.664 trimer mimics the structure and antigenicity of native Env. Here, we describe how the introduction of new disulfide bonds between the glycoprotein (gp)120 and gp41 subunits of SOSIP trimers of the BG505 and other genotypes improves their stability and antigenicity, reduces their conformational flexibility, and helps maintain them in the unliganded conformation. The resulting next-generation SOSIP.v5 trimers induce strong autologous tier-2 neutralizing antibody (NAb) responses in rabbits. In addition, the BG505 SOSIP.v6 trimers induced weak heterologous NAb responses against a subset of tier-2 viruses that were not elicited by the prototype BG505 SOSIP.664. These stabilization methods can be applied to trimers from multiple genotypes as components of multivalent vaccines aimed at inducing broadly NAbs (bNAbs).


Subject(s)
HIV-1/immunology , env Gene Products, Human Immunodeficiency Virus/immunology , Animals , Humans , Rabbits
18.
J Exp Med ; 214(9): 2573-2590, 2017 Sep 04.
Article in English | MEDLINE | ID: mdl-28847869

ABSTRACT

Induction of broadly neutralizing antibodies (bNAbs) by HIV-1 envelope glycoprotein immunogens would be a major advance toward an effective vaccine. A critical step in this process is the activation of naive B cells expressing germline (gl) antibody precursors that have the potential to evolve into bNAbs. Here, we reengineered the BG505 SOSIP.664 glycoprotein to engage gl precursors of bNAbs that target either the trimer apex or the CD4-binding site. The resulting BG505 SOSIP.v4.1-GT1 trimer binds multiple bNAb gl precursors in vitro. Immunization experiments in knock-in mice expressing gl-VRC01 or gl-PGT121 show that this trimer activates B cells in vivo, resulting in the secretion of specific antibodies into the sera. A crystal structure of the gl-targeting trimer at 3.2-Å resolution in complex with neutralizing antibodies 35O22 and 9H+109L reveals a native-like conformation and the successful incorporation of design features associated with binding of multiple gl-bNAb precursors.


Subject(s)
Antibodies, Neutralizing/immunology , HIV Envelope Protein gp160/immunology , HIV-1/immunology , Animals , Crystallography, X-Ray , Gene Knock-In Techniques , HEK293 Cells , Humans , Mice , Protein Multimerization/immunology , Protein Structure, Tertiary
19.
AIDS Res Hum Retroviruses ; 33(8): 749-759, 2017 08.
Article in English | MEDLINE | ID: mdl-28649869

ABSTRACT

HIV Research for Prevention: AIDS Vaccine, Microbicide, and ARV-based Prevention Science (HIVR4P) was built on a growing consensus that effective HIV prevention requires a combination of approaches and that understanding, analyzing, and debating the cross-cutting issues that impact prevention research are all essential to combat the global HIV/AIDS epidemic. To that end, the biennial HIVR4P conference is dedicated to all biomedical HIV prevention research approaches, including HIV vaccines, microbicides, pre-exposure prophylaxis, and treatment as prevention. The HIVR4P 2016 conference was held in Chicago, Illinois (USA), on October 17-21, and included more than 700 scientific presentations and 21 satellite sessions covering the latest and most promising advances across the HIV prevention research field. The theme "Partnering for Prevention" represented the conference's commitment to breaking down silos between research disciplines as well as between researchers, program developers, care providers, advocates, communities, and funders. Delegates spanning 42 countries attended the conference. One-third of those in attendance were early career investigators, which reflects a firm commitment to emerging researchers and ultimately to the goal of developing a sustainable scientific enterprise well into the future. This article presents a concise summary of highlights from the conference. For a more detailed account, one may find full abstracts, daily summaries, and webcasts on the conference website at hivr4p.org.


Subject(s)
Communicable Disease Control/methods , Disease Transmission, Infectious/prevention & control , HIV Infections/epidemiology , HIV Infections/prevention & control , Biomedical Research/trends , Communicable Disease Control/trends , Global Health , Humans
20.
Curr Opin Struct Biol ; 44: 125-133, 2017 06.
Article in English | MEDLINE | ID: mdl-28363124

ABSTRACT

The heavily glycosylated, trimeric HIV-1 envelope (Env) protein is the sole viral protein exposed on the HIV-1 virion surface and is thus a main focus of antibody-mediated vaccine development. Dense glycosylation at the outer domain of Env constrains normal enzymatic processing, stalling the glycans at immature oligomannose-type structures. Furthermore, native trimerization imposes additional steric constraints, which generate an extensive 'trimer-induced mannose patch'. Importantly, the immature glycans present a highly conserved feature of the virus that is targeted by broadly neutralizing antibodies. Quantitative mass spectrometry of glycopeptides together with structures of the trimeric viral-spike define the steric principles controlling processing and provide a detailed map of the glycan shield.


Subject(s)
env Gene Products, Human Immunodeficiency Virus/chemistry , env Gene Products, Human Immunodeficiency Virus/metabolism , Animals , Cell Membrane/metabolism , Epitopes/immunology , Glycosylation , Humans , Mannose/chemistry , Polysaccharides/chemistry , Polysaccharides/metabolism , env Gene Products, Human Immunodeficiency Virus/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...