Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 10527, 2024 05 08.
Article in English | MEDLINE | ID: mdl-38719885

ABSTRACT

Plasmodium falciparum, the causative agent of malaria, poses a significant global health challenge, yet much of its biology remains elusive. A third of the genes in the P. falciparum genome lack annotations regarding their function, impeding our understanding of the parasite's biology. In this study, we employ structure predictions and the DALI search algorithm to analyse proteins encoded by uncharacterized genes in the reference strain 3D7 of P. falciparum. By comparing AlphaFold predictions to experimentally determined protein structures in the Protein Data Bank, we found similarities to known domains in 353 proteins of unknown function, shedding light on their potential functions. The lowest-scoring 5% of similarities were additionally validated using the size-independent TM-align algorithm, confirming the detected similarities in 88% of the cases. Notably, in over 70 P. falciparum proteins the presence of domains resembling heptatricopeptide repeats, which are typically involvement in RNA binding and processing, was detected. This suggests this family, which is important in transcription in mitochondria and apicoplasts, is much larger in Plasmodium parasites than previously thought. The results of this domain search provide a resource to the malaria research community that is expected to inform and enable experimental studies.


Subject(s)
Plasmodium falciparum , Protozoan Proteins , Plasmodium falciparum/genetics , Plasmodium falciparum/metabolism , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Protozoan Proteins/chemistry , Algorithms , Protein Domains , Databases, Protein , Models, Molecular
2.
PLoS Biol ; 22(5): e3002639, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38820535

ABSTRACT

Vesicular trafficking, including secretion and endocytosis, plays fundamental roles in the unique biology of Plasmodium falciparum blood-stage parasites. Endocytosis of host cell cytosol (HCC) provides nutrients and room for parasite growth and is critical for the action of antimalarial drugs and parasite drug resistance. Previous work showed that PfVPS45 functions in endosomal transport of HCC to the parasite's food vacuole, raising the possibility that malaria parasites possess a canonical endolysosomal system. However, the seeming absence of VPS45-typical functional interactors such as rabenosyn 5 (Rbsn5) and the repurposing of Rab5 isoforms and other endolysosomal proteins for secretion in apicomplexans question this idea. Here, we identified a parasite Rbsn5-like protein and show that it functions with VPS45 in the endosomal transport of HCC. We also show that PfRab5b but not PfRab5a is involved in the same process. Inactivation of PfRbsn5L resulted in PI3P and PfRab5b decorated HCC-filled vesicles, typical for endosomal compartments. Overall, this indicates that despite the low sequence conservation of PfRbsn5L and the unusual N-terminal modification of PfRab5b, principles of endosomal transport in malaria parasite are similar to that of model organisms. Using a conditional double protein inactivation system, we further provide evidence that the PfKelch13 compartment, an unusual apicomplexa-specific endocytosis structure at the parasite plasma membrane, is connected upstream of the Rbsn5L/VPS45/Rab5b-dependent endosomal route. Altogether, this work indicates that HCC uptake consists of a highly parasite-specific part that feeds endocytosed material into an endosomal system containing more canonical elements, leading to the delivery of HCC to the food vacuole.

3.
PLoS Pathog ; 19(12): e1011814, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38039338

ABSTRACT

Single amino acid changes in the parasite protein Kelch13 (K13) result in reduced susceptibility of P. falciparum parasites to artemisinin and its derivatives (ART). Recent work indicated that K13 and other proteins co-localising with K13 (K13 compartment proteins) are involved in the endocytic uptake of host cell cytosol (HCCU) and that a reduction in HCCU results in reduced susceptibility to ART. HCCU is critical for parasite survival but is poorly understood, with the K13 compartment proteins among the few proteins so far functionally linked to this process. Here we further defined the composition of the K13 compartment by analysing more hits from a previous BioID, showing that MyoF and MCA2 as well as Kelch13 interaction candidate (KIC) 11 and 12 are found at this site. Functional analyses, tests for ART susceptibility as well as comparisons of structural similarities using AlphaFold2 predictions of these and previously identified proteins showed that vesicle trafficking and endocytosis domains were frequent in proteins involved in resistance or endocytosis (or both), comprising one group of K13 compartment proteins. While this strengthened the link of the K13 compartment to endocytosis, many proteins of this group showed unusual domain combinations and large parasite-specific regions, indicating a high level of taxon-specific adaptation of this process. Another group of K13 compartment proteins did not influence endocytosis or ART susceptibility and lacked detectable vesicle trafficking domains. We here identified the first protein of this group that is important for asexual blood stage development and showed that it likely is involved in invasion. Overall, this work identified novel proteins functioning in endocytosis and at the K13 compartment. Together with comparisons of structural predictions it provides a repertoire of functional domains at the K13 compartment that indicate a high level of adaption of endocytosis in malaria parasites.


Subject(s)
Antimalarials , Malaria, Falciparum , Parasites , Animals , Antimalarials/pharmacology , Plasmodium falciparum/metabolism , Parasites/metabolism , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Drug Resistance , Malaria, Falciparum/parasitology , Mutation
4.
Cell Syst ; 14(1): 9-23.e7, 2023 01 18.
Article in English | MEDLINE | ID: mdl-36657393

ABSTRACT

Taxon-specific proteins are key determinants defining the biology of all organisms and represent prime drug targets in pathogens. However, lacking comparability with proteins in other lineages makes them particularly difficult to study. In malaria parasites, this is exacerbated by technical limitations. Here, we analyzed the cellular location, essentiality, function, and, in selected cases, interactome of all unknown non-secretory proteins encoded on an entire P. falciparum chromosome. The nucleus was the most common localization, indicating that it is a hotspot of parasite-specific biology. More in-depth functional studies with four proteins revealed essential roles in DNA replication and mitosis. The mitosis proteins defined a possible orphan complex and a highly diverged complex needed for spindle-kinetochore connection. Structure-function comparisons indicated that the taxon-specific proteins evolved by different mechanisms. This work demonstrates the feasibility of gene-by-gene screens to elucidate the biology of malaria parasites and reveal critical parasite-specific processes of interest as drug targets.


Subject(s)
Malaria , Plasmodium falciparum , Humans , Plasmodium falciparum/genetics , Chromosomes, Human, Pair 3 , Kinetochores , Mitosis
5.
Med Res Rev ; 41(6): 2998-3022, 2021 11.
Article in English | MEDLINE | ID: mdl-34309894

ABSTRACT

Artemisinin and its derivatives (ART) are the cornerstone of malaria treatment as part of artemisinin combination therapy (ACT). However, reduced susceptibility to artemisinin as well as its partner drugs threatens the usefulness of ACTs. Single point mutations in the parasite protein Kelch13 (K13) are necessary and sufficient for the reduced sensitivity of malaria parasites to ART but several alternative mechanisms for this resistance have been proposed. Recent work found that K13 is involved in the endocytosis of host cell cytosol and indicated that this is the process responsible for resistance in parasites with mutated K13. These studies also identified a series of further proteins that act together with K13 in the same pathway, including previously suspected resistance proteins such as UBP1 and AP-2µ. Here, we give a brief overview of artemisinin resistance, present the recent evidence of the role of endocytosis in ART resistance and discuss previous hypotheses in light of this new evidence. We also give an outlook on how the new insights might affect future research.


Subject(s)
Antimalarials , Artemisinins , Malaria, Falciparum , Antimalarials/pharmacology , Antimalarials/therapeutic use , Artemisinins/pharmacology , Artemisinins/therapeutic use , Drug Resistance/genetics , Endocytosis , Humans , Malaria, Falciparum/drug therapy , Malaria, Falciparum/parasitology , Mutation , Plasmodium falciparum/genetics , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Protozoan Proteins/therapeutic use
6.
Vaccine ; 38(4): 779-789, 2020 01 22.
Article in English | MEDLINE | ID: mdl-31735500

ABSTRACT

BACKGROUND: This phase I trial evaluated the safety and immunogenicity of a candidate tuberculosis vaccination regimen, ChAdOx1 85A prime-MVA85A boost, previously demonstrated to be protective in animal studies, in healthy UK adults. METHODS: We enrolled 42 healthy, BCG-vaccinated adults into 4 groups: low dose Starter Group (n = 6; ChAdOx1 85A alone), high dose groups; Group A (n = 12; ChAdOx1 85A), Group B (n = 12; ChAdOx1 85A prime - MVA85A boost) or Group C (n = 12; ChAdOx1 85A - ChAdOx1 85A prime - MVA85A boost). Safety was determined by collection of solicited and unsolicited vaccine-related adverse events (AEs). Immunogenicity was measured by antigen-specific ex-vivo IFN-γ ELISpot, IgG serum ELISA, and antigen-specific intracellular IFN-γ, TNF-α, IL-2 and IL-17. RESULTS: AEs were mostly mild/moderate, with no Serious Adverse Events. ChAdOx1 85A induced Ag85A-specific ELISpot and intracellular cytokine CD4+ and CD8+ T cell responses, which were not boosted by a second dose, but were boosted with MVA85A. Polyfunctional CD4+ T cells (IFN-γ, TNF-α and IL-2) and IFN-γ+, TNF-α+ CD8+ T cells were induced by ChAdOx1 85A and boosted by MVA85A. ChAdOx1 85A induced serum Ag85A IgG responses which were boosted by MVA85A. CONCLUSION: A ChAdOx1 85A prime - MVA85A boost is well tolerated and immunogenic in healthy UK adults.


Subject(s)
BCG Vaccine/administration & dosage , Tuberculosis Vaccines/administration & dosage , Tuberculosis/prevention & control , Vaccination/methods , Adult , BCG Vaccine/immunology , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Cytokines/immunology , Follow-Up Studies , Humans , Immunization, Secondary , Immunogenicity, Vaccine , Tuberculosis/immunology , Tuberculosis Vaccines/adverse effects , Tuberculosis Vaccines/immunology , United Kingdom , Vaccination/adverse effects , Vaccines, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...