Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 25(9)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38732120

ABSTRACT

Adenosine A2A receptor (A2AR) antagonists are the leading nondopaminergic therapy to manage Parkinson's disease (PD) since they afford both motor benefits and neuroprotection. PD begins with a synaptic dysfunction and damage in the striatum evolving to an overt neuronal damage of dopaminergic neurons in the substantia nigra. We tested if A2AR antagonists are equally effective in controlling these two degenerative processes. We used a slow intracerebroventricular infusion of the toxin MPP+ in male rats for 15 days, which caused an initial loss of synaptic markers in the striatum within 10 days, followed by a neuronal loss in the substantia nigra within 30 days. Interestingly, the initial loss of striatal nerve terminals involved a loss of both dopaminergic and glutamatergic synaptic markers, while GABAergic markers were preserved. The daily administration of the A2AR antagonist SCH58261 (0.1 mg/kg, i.p.) in the first 10 days after MPP+ infusion markedly attenuated both the initial loss of striatal synaptic markers and the subsequent loss of nigra dopaminergic neurons. Strikingly, the administration of SCH58261 (0.1 mg/kg, i.p. for 10 days) starting 20 days after MPP+ infusion was less efficacious to attenuate the loss of nigra dopaminergic neurons. This prominent A2AR-mediated control of synaptotoxicity was directly confirmed by showing that the MPTP-induced dysfunction (MTT assay) and damage (lactate dehydrogenase release assay) of striatal synaptosomes were prevented by 50 nM SCH58261. This suggests that A2AR antagonists may be more effective to counteract the onset rather than the evolution of PD pathology.


Subject(s)
Adenosine A2 Receptor Antagonists , Corpus Striatum , Disease Models, Animal , Parkinson Disease , Receptor, Adenosine A2A , Animals , Adenosine A2 Receptor Antagonists/pharmacology , Adenosine A2 Receptor Antagonists/therapeutic use , Rats , Male , Parkinson Disease/drug therapy , Parkinson Disease/metabolism , Parkinson Disease/pathology , Receptor, Adenosine A2A/metabolism , Corpus Striatum/metabolism , Corpus Striatum/drug effects , Corpus Striatum/pathology , Dopaminergic Neurons/drug effects , Dopaminergic Neurons/metabolism , Dopaminergic Neurons/pathology , Pyrimidines/pharmacology , Pyrimidines/therapeutic use , Triazoles/pharmacology , Substantia Nigra/drug effects , Substantia Nigra/metabolism , Substantia Nigra/pathology , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Rats, Sprague-Dawley
2.
J Med Chem ; 61(10): 4301-4316, 2018 05 24.
Article in English | MEDLINE | ID: mdl-29681156

ABSTRACT

Fluorescent ligands represent powerful tools for biological studies and are considered attractive alternatives to radioligands. In this study, we developed fluorescent antagonists for A2B adenosine receptors (A2BARs), which are targeted by antiasthmatic xanthines and were proposed as novel targets in immuno-oncology. Our approach was to merge a small borondipyrromethene (BODIPY) derivative with the pharmacophore of 8-substituted xanthine derivatives. On the basis of the design, synthesis, and evaluation of model compounds, several fluorescent ligands were synthesized. Compound 29 (PSB-12105), which displayed high affinity for human, rat, and mouse A2BARs ( Ki = 0.2-2 nM) and high selectivity for this AR subtype, was selected for further studies. A homology model of the human A2BAR was generated, and docking studies were performed. Moreover, 29 allowed us to establish a homogeneous receptor-ligand binding assay using flow cytometry. These compounds constitute the first potent, selective fluorescent A2BAR ligands and are anticipated to be useful for a variety of applications.


Subject(s)
Adenosine A2 Receptor Antagonists/pharmacology , Flow Cytometry/methods , Fluorescent Dyes/chemistry , Receptor, Adenosine A2B/chemistry , Animals , Binding, Competitive , CHO Cells , Cell Proliferation , Cricetinae , Cricetulus , Cyclic AMP/metabolism , Humans , Mice , Models, Molecular , Molecular Structure , Protein Binding , Protein Conformation , Radioligand Assay , Rats
3.
ACS Med Chem Lett ; 2(12): 890-5, 2011 Dec 08.
Article in English | MEDLINE | ID: mdl-24900277

ABSTRACT

Adenosine A2A receptor agonists for the local treatment of inflammatory bowel disease (IBS) were designed and synthesized. Polar groups were introduced to prevent peroral absorption and subsequent systemic, e.g., hypotensive, side effects. 4-(2-{6-Amino-9-[(2R,3R,4S,5R)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl]-9H-purin-2-ylthio}ethyl)benzenesulfonic acid (7, PSB-0777) was selected for further evaluation in rat ileum/jejunum preparations in ex vivo experiments. Compound 7 significantly improved impaired acetylcholine-induced contractions induced by 2,4,6-trinitrobenzenesulfonic acid and showed synergism with an A2B-selective antagonist. Thus, nonabsorbable, locally active A2A agonists, as a monotherapy or in combination with an A2B antagonist, may be an efficient novel treatment for IBS, preventing the severe systemic side effects of known A2A agonists.

4.
J Med Chem ; 52(23): 7669-77, 2009 Dec 10.
Article in English | MEDLINE | ID: mdl-19580286

ABSTRACT

Prodrugs of adenosine A(2A) receptor agonists were developed that are activated by ecto-5'-nucleotidase (ecto-5'-NT, CD73). Because ecto-5'-NT is upregulated in inflamed tissue, the A(2A) agonists are expected to be released from their prodrug form at the sites of inflammation. 2-(Ar)alkyl-substituted AMP derivatives were synthesized and investigated. Certain 2-substituted AMP derivatives, including 2-hexylthio-AMP, 2-cyclopentylthio-AMP, 2-cyclohexylmethylthio-AMP, and 2-cyclohexylethylthio-AMP were accepted as substrates by ecto-5'-NT and readily converted to the corresponding 2-substituted adenosine derivatives. The 2-cyclohexylethylthio substitution was a good compromise between the requirements of the ecto-5'-NT and the adenosine A(2A) receptor. The corresponding AMP derivative (12g) was a similarly good substrate as AMP itself, while the resulting adenosine derivative (11g) was a relatively potent A(2A) agonist (radioligand binding to rat brain striatal membranes: K(i) = 372 nM; inhibition of anti-CD3/anti-CD28-induced IFN-gamma release in mouse CD4+ cells: EC(50) = 50 nM). Compound 11g was released from 12g by incubation with CD4+ cells isolated from wild-type mice but only to a much smaller extent by cells from ecto-5'-NT knockout mice. Compound 12g will be a new lead structure for the development of more potent and selective ecto-5'-NT-activated prodrugs of selective anti-inflammatory A(2A) receptor agonists.


Subject(s)
5'-Nucleotidase/metabolism , Adenosine A2 Receptor Agonists , Adenosine Monophosphate/metabolism , Prodrugs/metabolism , Adenosine Monophosphate/chemistry , Animals , Anti-Inflammatory Agents/adverse effects , Anti-Inflammatory Agents/metabolism , Anti-Inflammatory Agents/pharmacology , Gene Expression Regulation, Enzymologic , Humans , Hydrolysis , Interferon-gamma/biosynthesis , Male , Mice , Prodrugs/chemistry , Rats , T-Lymphocytes/drug effects , T-Lymphocytes/metabolism , Vasodilation/drug effects
5.
Bioorg Med Chem ; 17(7): 2842-51, 2009 Apr 01.
Article in English | MEDLINE | ID: mdl-19278853

ABSTRACT

In the present study we synthesized 36 coumarin and 2H-chromene derivatives applying a recently developed umpoled domino reaction using substituted salicylaldehyde and alpha,beta-unsaturated aldehyde derivatives as starting compounds. In radioligand binding studies 5-substituted 3-benzylcoumarin derivatives showed affinity to cannabinoid CB(1) and CB(2) receptors and were identified as new lead structures. In further GTPgammaS binding studies selected compounds were shown to be antagonists or inverse agonists.


Subject(s)
Coumarins/chemical synthesis , Coumarins/pharmacology , Receptor, Cannabinoid, CB1/agonists , Receptor, Cannabinoid, CB1/antagonists & inhibitors , Receptor, Cannabinoid, CB2/agonists , Receptor, Cannabinoid, CB2/antagonists & inhibitors , Animals , Cell Line , Coumarins/chemistry , Drug Inverse Agonism , Humans , Rats , Receptor, Cannabinoid, CB1/metabolism , Receptor, Cannabinoid, CB2/metabolism , Species Specificity , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...