Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
IEEE Trans Biomed Eng ; 67(2): 565-576, 2020 02.
Article in English | MEDLINE | ID: mdl-31135342

ABSTRACT

OBJECTIVE: Accurate biopsy sampling of the suspected lesions is critical for the diagnosis and clinical management of prostate cancer. Transperineal in-bore MRI-guided prostate biopsy (tpMRgBx) is a targeted biopsy technique that was shown to be safe, efficient, and accurate. Our goal was to develop an open source software platform to support evaluation, refinement, and translation of this biopsy approach. METHODS: We developed SliceTracker, a 3D Slicer extension to support tpMRgBx. We followed modular design of the implementation to enable customization of the interface and interchange of image segmentation and registration components to assess their effect on the processing time, precision, and accuracy of the biopsy needle placement. The platform and supporting documentation were developed to enable the use of software by an operator with minimal technical training to facilitate translation. Retrospective evaluation studied registration accuracy, effect of the prostate segmentation approach, and re-identification time of biopsy targets. Prospective evaluation focused on the total procedure time and biopsy targeting error (BTE). RESULTS: Evaluation utilized data from 73 retrospective and ten prospective tpMRgBx cases. Mean landmark registration error for retrospective evaluation was 1.88 ± 2.63 mm, and was not sensitive to the approach used for prostate gland segmentation. Prospectively, we observed target re-identification time of 4.60 ± 2.40 min and BTE of 2.40 ± 0.98 mm. CONCLUSION: SliceTracker is modular and extensible open source platform for supporting image processing aspects of the tpMRgBx procedure. It has been successfully utilized to support clinical research procedures at our site.


Subject(s)
Image-Guided Biopsy/methods , Magnetic Resonance Imaging/methods , Prostate/diagnostic imaging , Prostatic Neoplasms , Software , Humans , Image Interpretation, Computer-Assisted , Male , Perineum/diagnostic imaging , Perineum/surgery , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/pathology
2.
Proc SPIE Int Soc Opt Eng ; 101352017 Feb 11.
Article in English | MEDLINE | ID: mdl-28615794

ABSTRACT

Deep learning models have outperformed some of the previous state-of-the-art approaches in medical image analysis. Instead of using hand-engineered features, deep models attempt to automatically extract hierarchical representations at multiple levels of abstraction from the data. Therefore, deep models are usually considered to be more flexible and robust solutions for image analysis problems compared to conventional computer vision models. They have demonstrated significant improvements in computer-aided diagnosis and automatic medical image analysis applied to such tasks as image segmentation, classification and registration. However, deploying deep learning models often has a steep learning curve and requires detailed knowledge of various software packages. Thus, many deep models have not been integrated into the clinical research workflows causing a gap between the state-of-the-art machine learning in medical applications and evaluation in clinical research procedures. In this paper, we propose "DeepInfer" - an open-source toolkit for developing and deploying deep learning models within the 3D Slicer medical image analysis platform. Utilizing a repository of task-specific models, DeepInfer allows clinical researchers and biomedical engineers to deploy a trained model selected from the public registry, and apply it to new data without the need for software development or configuration. As two practical use cases, we demonstrate the application of DeepInfer in prostate segmentation for targeted MRI-guided biopsy and identification of the target plane in 3D ultrasound for spinal injections.

3.
Clin Image Based Proced ; 9401: 122-129, 2016.
Article in English | MEDLINE | ID: mdl-27135064

ABSTRACT

Accurate sampling of cancer suspicious locations is critical in targeted prostate biopsy, but can be complicated by the motion of the prostate. We present an open-source software for intra-procedural tracking of the prostate and biopsy targets using deformable image registration. The software is implemented in 3D Slicer and is intended for clinical users. We evaluated accuracy, computation time and sensitivity to initialization, and compared implementations that use different versions of the Insight Segmentation Toolkit (ITK). Our retrospective evaluation used data from 25 in-bore MRI-guided prostate biopsy cases (343 registrations total). Prostate Dice similarity coefficient improved on average by 0.17 (p < 0.0001, range 0.02-0.48). Registration was not sensitive to operator variability. Computation time decreased significantly for the implementation using the latest version of ITK. In conclusion, we presented a fully functional open-source tool that is ready for prospective evaluation during clinical MRI-guided prostate biopsy interventions.

4.
Mol Imaging Biol ; 13(4): 613-22, 2011 Aug.
Article in English | MEDLINE | ID: mdl-20737221

ABSTRACT

PURPOSE: Magnetic resonance imaging (MRI) is a promising approach for non-invasive monitoring after liver cell transplantation. We compared in vitro labeling of human liver cells with nano-sized (SPIO) and micron-sized iron oxide particles (MPIO). PROCEDURES: The cellular iron load was quantified and phantom studies were performed using 3.0-T MRI. Transferrin receptor and ferritin gene expression, reactive oxygen species (ROS) formation, transaminase leakage, and urea synthesis were investigated over 6 days. RESULTS: Incubation with MPIO produced stronger signal extinctions in MRI at similar iron loads within shorter labeling time. MPIO had no negative effects on the cellular iron homeostasis or cell performance, whereas SPIO caused temporary ROS formation and non-physiologic activation of the iron metabolic pathway. CONCLUSIONS: Our findings suggest that MPIO are suited for clinical translation of strategies for cellular imaging with MRI. Attention should be paid to iron release and oxidative stress caused by biodegradable contrast agents.


Subject(s)
Contrast Media/metabolism , Hepatocytes/metabolism , Liver/cytology , Magnetic Resonance Imaging/methods , Staining and Labeling , Translational Research, Biomedical , Ferritins/genetics , Ferritins/metabolism , Ferrosoferric Oxide/metabolism , Gene Expression Regulation , Hepatocytes/cytology , Humans , Iron/metabolism , Middle Aged , Reactive Oxygen Species/metabolism , Receptors, Transferrin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...