Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Chemosphere ; 328: 138586, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37028725

ABSTRACT

Nanofiltration (NF) membranes are promising media for water and wastewater treatment; however, they suffer from their hydrophobic nature and low permeability. For this reason, the polyvinyl chloride (PVC) NF membrane was modified by iron (III) oxide@Gum Arabic (Fe3O4@GA) nanocomposite. First, Fe3O4@GA nanocomposite was synthesized by the co-precipitation approach and then its morphology, elemental composition, thermal stability, and functional groups were characterized by various analyses. Next, the prepared nanocomposite was added to the casting solution of the PVC membrane. The bare and modified membranes were fabricated by a nonsolvent-induced phase separation (NIPS) method. The characteristics of fabricated membranes were assessed by mechanical strength, water contact angle, pore size, and porosity measurements. The optimum Fe3O4@GA/PVC membrane had a 52 L m-2. h-1. bar-1 water flux with a high flux recovery ratio (FRR) value (82%). Also, the filtration experiment exhibited that the Fe3O4@GA/PVC membrane could remarkably remove organic contaminants, achieving high rejection rates of 98% Reactive Red-195, 95% Reactive Blue-19, and 96% Rifampicin antibiotic by 0.25 wt% of Fe3O4@GA/PVC membrane. According to the results, adding Fe3O4@GA green nanocomposite to the membrane casting solution is a suitable and efficient procedure for modifying NF membranes.


Subject(s)
Biofouling , Polyvinyl Chloride , Gum Arabic , Biofouling/prevention & control , Membranes, Artificial , Water/chemistry
2.
Article in English | MEDLINE | ID: mdl-36898166

ABSTRACT

Membrane-based separation processes are part of most water purification plants worldwide. Industrial separation applications, primarily water purification and gas separation, can be improved with novel membranes or modification to existing ones. Atomic layer deposition (ALD) is an emerging technique that is proposed to upgrade certain kinds of membranes independent of their chemistry and morphology. ALD deposits thin, defect-free, angstrom-scale, and uniform coating layers on a substrate's surface by reacting with gaseous precursors. The surface-modifying effects of ALD are described in the present review, followed by a description of various types of inorganic and organic barrier films and how these can be used in combination with ALD. The role of ALD in membrane fabrication and modification is categorized into different membrane-based groups according to the treated medium, i.e., water or gas. In all membrane types, the ALD-based direct deposition of inorganic materials, mainly metal oxides, on the membrane surface can improve antifouling, selectivity, permeability, and hydrophilicity. Therefore, the ALD technique can broaden the applications of membranes to the treatment of emerging contaminants in water and air. Finally, the advancement, limitations, and challenges of ALD-based membrane fabrication and modification are compared to provide a comprehensive guideline for developing next-generation membranes with improved filtration and separation performance.

3.
Int J Biol Macromol ; 235: 123826, 2023 Apr 30.
Article in English | MEDLINE | ID: mdl-36828094

ABSTRACT

Tetracycline (TC) antibiotic-related water pollution directly threatens human health and ecosystems. Here, a zinc ferrite/chitosan-curdlan (ZNF/CHT-CRD) magnetic composite was prepared via a co-precipitation method to be used as a novel, green adsorbent for TC removal from water. Benefiting from a multitude of functional groups, CRD was first crosslinked with CHT and then magnetized with ZNF to provide an easy separation from the solution with an external magnetic force. The successful synthesis and magnetization of the composite were verified with different characterization techniques. The effect of solution pH and composite dosage was carefully evaluated. The optimum solution pH and composite dosage were 6 and 0.65 g/L, respectively, with complete TC removal. The adsorption process by the magnetic composite followed the pseudo-first-order kinetics and Langmuir isotherm models. The maximum adsorption capacity determined from the Langmuir model was 371.42 mg/g at 328 K. Thermodynamic parameters indicated endothermic and spontaneous adsorption. Meanwhile, the composite could be readily separated from the aqueous solution thanks to its magnetic property. Then, it was regenerated with acetone and ethanol to be reused for five more successive cycles. Interestingly, the prepared adsorbent was highly stable and performant in removing TC, maintaining approximately 90 % of its first-cycle adsorption capacity. The adsorption mechanism was primarily attributed to electrostatic and hydrogen bonding attractions. Overall, the currently developed adsorbent could be a more favorable, efficient, and cost-effective candidate than other magnetic chitosan-based composites. These features make it applicable for treating water contaminated with various pharmaceutical pollutants with high separation efficiency and easy recovery under successive adsorption-desorption cycles.


Subject(s)
Chitosan , Water Pollutants, Chemical , Water Purification , Humans , Zinc , Chitosan/chemistry , Adsorption , Water/chemistry , Ecosystem , Anti-Bacterial Agents , Pharmaceutical Preparations , Tetracyclines , Water Pollutants, Chemical/chemistry , Kinetics , Hydrogen-Ion Concentration , Water Purification/methods
4.
Sci Rep ; 12(1): 22034, 2022 12 20.
Article in English | MEDLINE | ID: mdl-36539589

ABSTRACT

Current work focuses on fabricating a new bio-nano adsorbent of Fe3O4@inulin nanocomposite via an in-situ co-precipitation procedure to adsorb methyl orange (MO) and crystal violet (CV) dyes from aqueous solutions. Different physical characterization analyses verified the successful fabrication of the magnetic nanocomposite. The adsorbent performance in dye removal was evaluated by varying initial dye concentration, adsorbent dosage, pH and temperature in 5110 mg/L, 0.10.8 g/L, 111 and 283-338 K, respectively. Due to the pH of zero point of charge and intrinsic properties of dyes, the optimum pHs were 5 and 7 for MO and CV adsorption, respectively. The correlation of coefficient (R2) and reduced chi-squared value were the criteria in order to select the best isotherm and kinetics models. The Langmuir model illustrated a better fit for the adsorption data for both dyes, demonstrating the maximum adsorption capacity of 276.26 and 223.57 mg/g at 338 K for MO and CV, respectively. As well, the pseudo-second-order model showed a better fitness for kinetics data compared to the pseudo-first-order and Elovich models. The thermodynamic parameters exhibited that the dye adsorption process is endothermic and spontaneous, which supported the enhanced adsorption rate by increasing temperature. Moreover, the nanocomposite presented outstanding capacity and stability after 6 successive cycles by retaining more than 87% of its initial dye removal efficiency. Overall, the magnetized inulin with Fe3O4 could be a competent adsorbent for eliminating anionic and cationic dyes from water.


Subject(s)
Coloring Agents , Water Pollutants, Chemical , Coloring Agents/chemistry , Water , Gentian Violet/chemistry , Inulin , Hydrogen-Ion Concentration , Water Pollutants, Chemical/chemistry , Indicators and Reagents , Adsorption , Kinetics
5.
J Environ Manage ; 324: 116358, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36179472

ABSTRACT

Wastewater containing pharmaceutical contaminants has become a critical environmental concern due to rising population and drug consumption caused by increased life expectancy. Diclofenac (DCF) is one of the most applicable drugs for veterinary and human health purposes, polluting surface waters in different ways. This work aims to synthesize a novel pectin-graphene oxide (GO)-magnesium ferrite (MgFe2O4)-zinc oxide (ZnO) nanocomposite (PGMZ) for photocatalytic degradation of DCF in an aquatic environment under visible light irradiation. The single and synthesized nanocomposites were characterized by several analyses, confirming the successful synthesis of the nanocomposite. Effects of four operation conditions, including nanocomposite dosage (1-1.25 g/L), nanocomposite type, initial contaminant concentration (35-55 mg/L), and solution pH (3-11), were investigated on the degradation performance. From the kinetic study, the effect of mixing two composites, i.e., synergy percentage, was 38.7% when ZnO-MgFe2O4 particles were added to the GO-pectin structure. By examining the effect of different free radical enhancers and scavenging compounds on the DCF photodegradation, the most influential scavenging components were in the following order; NaCl > Na2CO3 > Na2SO4, while K2S2O8 was a better enhancer than H2O2 at their optimal concentration. Finally, the PGMZ photocatalyst was reused six times with a reduction of about 20% in its removal efficiency, indicating excellent reusability and stability.


Subject(s)
Nanocomposites , Zinc Oxide , Humans , Zinc Oxide/chemistry , Diclofenac , Pectins , Hydrogen Peroxide , Nanocomposites/chemistry , Light , Water , Catalysis
SELECTION OF CITATIONS
SEARCH DETAIL
...