Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Iran J Biotechnol ; 16(3): e1284, 2018 Aug.
Article in English | MEDLINE | ID: mdl-31457020

ABSTRACT

BACKGROUND: Considering natural thermal stability, Geobacillus stearothermophilus amylase and Cel5E from Clostridium thermocellum are good candidates for industrial applications. To be compatible with the industrial applications, this enzyme should be stable in the high temperatures, so any improvement in their thermal stability is valuable. OBJECTIVES: Using in silico approach and identifying point mutations in the structure amylase of G. stearothermophilus and Cel5E from C. termocellum we tried to increase thermal stability of the enzymes along with their catalytic activity to reach a new industrial amylase with higher thermostability and an improved function. MATERIALS AND METHODS: In this study we predicted the 3D structure of the enzymes, then simulated the molecular docking study using MolDock, PLANTS, and Lamarkian genetic algorithm as scoring functions for the docking and in silico engineering of the protein aiming to increase the thermal stability and catalytic activity. RESULTS: A series of thermal stability increasing point mutations were exerted around the active site of the enzyme, then by docking procedure, the binding affinity was measured and finally a list of mutations which theoretically improved the increased thermal stability as well as catalytic activity were proposed. CONCLUSIONS: Based on the in silico results obtained the modified enzymes seems to be suitable candidates for considering in both laboratory and industrial scales.

2.
Cytotechnology ; 69(4): 551-563, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28397098

ABSTRACT

This study investigated the potential of Persian shallot extract as an anticancer agent in HepG2 tumor cell line, an in vitro human hepatoma cancer model system. The inhibitory effect of Persian shallot on the growth of HepG2 cells was measured by MTT assay. To explore the underlying mechanism of cell growth inhibition of Persian shallot, the activity of Persian shallot in inducing apoptosis was investigated through the detection of annexin V signal by flow cytometry and expression of some apoptosis related genes such p21, p53, puma, caspase-8 family-Bcl-2 proteins like bid, bim, bcl-2 and bax were measured by real-time PCR in HepG2 cells. Persian shallot extract inhibited the growth of HepG2 cells in a dose-dependent manner. The IC50 value (inhibiting cell growth by 50%) was 149 µg/ml. The results of real-time PCR revealed a significant up-regulation of bid, bim, caspase-8, puma, p53, p21 and bax genes and a significant downregulation of bcl-2 gene in HepG2 cells treated with Persian shallot extract significantly. Therefore, this is the first report on an increased expression of bid, bim, caspase-8, puma, p53, p21 and bax genes and down regulation of bcl-2 gene indicating that the Persian shallot extract possibly induced the process of cell death through the intrinsic and extrinsic apoptosis pathways and triggers the programmed cell death in HepG2 tumor cell lines by modulating the expression of pro-/anti-apoptotic genes. Furthermore, we showed that Persian shallot extract increased annexin V signal and expression, resulting in apoptotic cell death of HepG2 cells after 24 h treatment. Therefore, according to the results of this study, the Persian shallot extract could be considered as a potential candidate for production of drug for the prevention or treatment of human hepatoma.

3.
Biotechnol Appl Biochem ; 63(6): 870-876, 2016 Nov.
Article in English | MEDLINE | ID: mdl-26331355

ABSTRACT

Organophosphorus (OPs) compounds are widely used in many pesticides, insecticides, and chemical nerve agents. These compounds are hazardous for humans and the environment. There are many reports on detoxification of these compounds, among them enzymatic cleavage of these compounds with organophosphorus hydrolase (OPH) has been taken into more consideration. Several studies have been performed to improve OPH secretion in Escherichia coli by different signal peptides, but have not been successful. In this study, to achieve the extracellular secretion of OPH in E. coli, the complete opd gene along with its native signal peptide was codon optimized and expressed in E. coli BL21(DE3)pLysS. The culture medium showed OPH activity after 2, 4, and 6 H of induction time. The extracellular secretion of OPH was also confirmed by SDS-PAGE and Western blot analysis. The effects of different factors in growth medium were also investigated regarding expression and extracellular secretion of OPH. It appears that the secretion of OPH into the extracellular medium is highly affected by culture conditions. Therefore, our results revealed that the recombinant OPH was successfully secreted into the extracellular medium. This secretion system can be considered as a high efficiency biocatalyst for detoxification of OPs compounds.


Subject(s)
Aryldialkylphosphatase/genetics , Aryldialkylphosphatase/metabolism , Escherichia coli/cytology , Extracellular Space/metabolism , Flavobacterium/enzymology , Flavobacterium/genetics , Genetic Engineering/methods , Aryldialkylphosphatase/chemistry , Cobalt/pharmacology , Codon/genetics , Culture Media/chemistry , Dose-Response Relationship, Drug , Escherichia coli/drug effects , Escherichia coli/genetics , Escherichia coli/growth & development , Glycine/pharmacology , Isopropyl Thiogalactoside/pharmacology , Plasmids/genetics , Protein Sorting Signals , Time Factors
4.
Biomed Res Int ; 2014: 182945, 2014.
Article in English | MEDLINE | ID: mdl-25202705

ABSTRACT

Staphylococcus aureus is a Gram-positive bacterium that causes many harmful and life-threatening diseases. Some strains of this bacterium are resistant to available antibiotics. This study was designed to evaluate the ability of indigenous actinomycetes to produce antibacterial compounds against S. aureus and characterize the structure of the resultant antibacterial compounds. Therefore, a slightly modified agar well diffusion method was used to determine the antibacterial activity of actinomycete isolates against the test microorganisms. The bacterial extracts with antibacterial activity were fractionated by silica gel and G-25 sephadex column chromatography. Also, the active fractions were analyzed by thin layer chromatography. Finally, the partial structure of the resultant antibacterial compound was characterized by Fourier transform infrared spectroscopy. One of the isolates, which had a broad spectrum and high antibacterial activity, was designated as Pseudonocardia sp. JB05, based on the results of biochemical and 16S rDNA gene sequence analysis. Minimum inhibitory concentration for this bacterium was 40 AU mL(-1) against S. aureus. The antibacterial activity of this bacterium was stable after autoclaving, 10% SDS, boiling, and proteinase K. Thin layer chromatography, using anthrone reagent, showed the presence of carbohydrates in the purified antibacterial compound. Finally, FT-IR spectrum of the active compound illustrated hydroxyl groups, hydrocarbon skeleton, and double bond of polygenic compounds in its structure. To the best of our knowledge, this is the first report describing the efficient antibacterial activity by a local strain of Pseudonocardia. The results presented in this work, although at the initial stage in bioactive product characterization, will possibly contribute toward the Pseudonocardia scale-up for the production and identification of the antibacterial compounds.


Subject(s)
Actinobacteria/chemistry , Anti-Bacterial Agents/pharmacology , Salinity , Soil Microbiology , Staphylococcus aureus/drug effects , Anti-Bacterial Agents/isolation & purification , DNA, Ribosomal/genetics , Endopeptidase K/metabolism , Microbial Sensitivity Tests , Molecular Sequence Data , Phylogeny , Soil , Spectroscopy, Fourier Transform Infrared
SELECTION OF CITATIONS
SEARCH DETAIL
...