Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biomed Opt Express ; 10(12): 6340-6350, 2019 Dec 01.
Article in English | MEDLINE | ID: mdl-31853403

ABSTRACT

One of the major challenges during polarimetric determination of glucose concentration is the spectral superposition with other optically active molecules, especially proteins like albumin. Since each of those substances has a characteristic optical rotatory dispersion (ORD), we developed a broadband polarimeter setup to distinguish between glucose and albumin. A partial least squares (PLS) regression with 5 components was applied to the polarimeter signal in the wavelength range of 380 - 680 nm . To verify the efficacy of the proposed method, different glucose levels of 0 - 500 mg/dl were spiked with varying albumin concentrations up to 1000 mg/dl . A standard error of prediction of ± 16.0 mg/dl was achieved compared to ± 128.3 mg/dl using a two-wavelength system with 532 nm and 635 nm under the same conditions.

2.
Biomed Opt Express ; 10(1): 308-321, 2019 Jan 01.
Article in English | MEDLINE | ID: mdl-30775102

ABSTRACT

Polarimetric determination of glucose is known to be strongly affected by scattering in turbid media. Other effects like fluctuations of light source emission and sample absorption also deteriorate glucose predictability. This work presents a measurement setup using a real-time data processing method to address these problems. The approach uses the frequency-dependent intensity components created when the polarization of the incident light is periodically modulated by a Faraday rotator. The efficacy of the proposed method was verified experimentally for a glucose range of 0 - 500 mg/dl. It was shown that the approach reduces the prediction errors in slightly turbid media from 35.7 mg/dl down to 1.17 mg/dl. In a similar way, the glucose predictability for fluctuating light source emission was improved from ±16.16 mg/dl to ±1 mg/dl and for varying sample absorbance from ±15.69 mg/dl to ±1.23 mg/dl, respectively. Therefore, considerable improvement of robustness and reproducibility of glucose determination was demonstrated.

SELECTION OF CITATIONS
SEARCH DETAIL
...