Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
iScience ; 26(7): 107174, 2023 Jul 21.
Article in English | MEDLINE | ID: mdl-37485362

ABSTRACT

Understanding the optothermal physics of quantum materials will enable the efficient design of next-generation photonic and superconducting circuits. Anharmonic phonon dynamics is central to strongly interacting optothermal physics. This is because the pressure of a gas of anharmonic phonons is temperature dependent. Phonon-phonon and electron-phonon quantum interactions contribute to the anharmonic phonon effect. Here we have studied the optothermal properties of physically exfoliated WS2 van der Waals crystal via temperature-dependent Raman spectroscopy and machine learning strategies. This fundamental investigation will lead to unveiling the dependence of temperature on in-plane and out-of-plane Raman shifts (Raman thermometry) of WS2 to study the thermal conductivity, hot carrier diffusion coefficient, and thermal expansion coefficient.

2.
ACS Omega ; 6(48): 33130-33140, 2021 Dec 07.
Article in English | MEDLINE | ID: mdl-34901664

ABSTRACT

Transition-metal oxides such as cupric and cuprous oxides are strongly correlated materials made of earth-abundant chemical elements displaying energy band gaps of around 1.2 and 2.1 eV. The ability to design nanostructures of cupric and cuprous oxide semiconductors with in situ phase change and morphological transition will benefit several applications including photovoltaic energy conversion and photoelectrochemical water splitting. Here, we have developed a physicochemical route to synthesize copper oxide nanostructures, enabling the phase change of cupric oxide into cuprous oxide using an electric field of 105 V/m in deionized water via a new synthetic design protocol called electric-field-assisted pulsed laser ablation in liquids (EFA-PLAL). The morphology of the nanostructures can also be tuned from a sphere of ∼20 nm to an elongated leaf of ∼3 µm by controlling the intensity of the applied electric field. Futuristically, the materials chemistry occurring during the EFA-PLAL synthesis protocol developed here can be leveraged to design various strongly correlated nanomaterials and heterostructures of other 3d transition-metal oxides.

3.
iScience ; 24(11): 103374, 2021 Nov 19.
Article in English | MEDLINE | ID: mdl-34816107

ABSTRACT

Hexagonal boron nitride (h-BN) and its heterostructures with graphene are widely investigated van der Waals (vdW) quantum materials for electronics, photonics, sensing, and energy storage/transduction. However, their metal catalyst-based growth and transfer-based heterostructure assembly approaches present impediments to obtaining high-quality and wafer-scale quantum material. Here, we have presented our perspective on the synthetic strategies that involve direct nucleation of h-BN on various dielectric substrates and its heterostructures with graphene. Mechanistic understanding of direct growth of h-BN via bottom-up approaches such as (a) the chemical-interaction guided nucleation on silicon-based dielectrics, (b) surface nitridation and N+ sputtering of h-BN target on sapphire, and (c) epitaxial growth of h-BN on sapphire, among others, are reviewed. Several design methodologies are presented for the direct growth of vertical and lateral vdW heterostructures of h-BN and graphene. These complex 2D heterostructures exhibit various physical phenomena and could potentially have a range of practical applications.

4.
ACS Appl Mater Interfaces ; 12(35): 39772-39780, 2020 Sep 02.
Article in English | MEDLINE | ID: mdl-32805940

ABSTRACT

Interfacing two-dimensional graphene oxide (GO) platelets with one-dimensional zinc oxide nanorods (ZnO) would create mixed-dimensional heterostructures suitable for modern optoelectronic devices. However, there remains a lack in understanding of interfacial chemistry and wettability in GO-coated ZnO nanorods heterostructures. Here, we propose a hydroxyl-based dissociation-exchange mechanism to understand interfacial interactions responsible for GO adsorption onto ZnO nanorods hydrophobic substrates. The proposed mechanism initiated from mixing GO suspensions with various organics would allow us to overcome the poor wettability (θ ∼ 140.5°) of the superhydrophobic ZnO nanorods to the drop-casted GO. The addition of different classes of organics into the relatively high pH GO suspension with a volumetric ratio of 1:3 (organic-to-GO) is believed to introduce free radicals (-OH and -COOH), which consequently result in enhancing adhesion (chemisorption) between ZnO nanorods and GO platelets. The wettability study shows as high as 75% reduction in the contact angle (θ = 35.5°) when the GO suspension is mixed with alcohols (e.g., ethanol) prior to interfacing with ZnO nanorods. The interfacial chemistry developed here brings forth a scalable tool for designing graphene-coated ZnO heterojunctions for photovoltaics, photocatalysis, biosensors, and UV detectors.

5.
ACS Nano ; 13(11): 12929-12938, 2019 Nov 26.
Article in English | MEDLINE | ID: mdl-31609585

ABSTRACT

Controlling the doping levels in graphene by modifying the electric potential of interfaced nanostructures is important to understand "cascaded-doping"-based applications of graphene. However, graphene does not have active sites for nanoparticle attachment, and covalently adding functional groups on graphene disrupts its planar sp2-hybridization, affecting its cascaded doping. Here we show a hexahepto (η6) photo-organometallic chemistry to interface nanoparticles on graphene while retaining the sp2-hybridized state of carbon atoms. For testing cascaded doping with ethanol interaction, transition metal oxide nanoparticles (TMONs) (Cr2O3/CrO3, MoO3, and WO3) are attached on graphene. Here, the transition metal forms six σ-bonds and π-back-bonds with the benzenoid rings of graphene, while its opposite face binds to three carbonyl groups, which enable nucleation and growth of TMONs. With a radius size ranging from 50 to 100 nm, the TMONs downshift the Fermi level of graphene (-250 mV; p-doping) via interfacial charge transfer. This is consistent with the blue shift of graphene's G and 2D Raman modes with a hole density of 3.78 × 1012 cm-2. With susceptibility to ethanol, CrxO3 nanoparticles on graphene enable cascaded doping from ethanol that adsorbs on CrxO3, leading to doping of graphene to increase the electrical resistance of the TMONs-graphene hybrid. This nanoparticle-on-graphene construct can have several applications in gas/vapor sensing, electrochemical catalysis, and high-energy-density supercapacitors.

6.
Nanoscale ; 10(43): 20218-20225, 2018 Nov 08.
Article in English | MEDLINE | ID: mdl-30357212

ABSTRACT

Van Hove singularity (VHS) induced enhancement of visible-frequency absorption in atomically-thin two-dimensional (2D) crystals provides an opportunity for improved light management in photovoltaics; however, it requires the 2D nanomaterial to be in close vicinity of a photojunction. In this report, we design a Schottky junction-based photovoltaic system with single-layer graphene atop n-type silicon (n-Si), which is interfaced directly with a few layers of tungsten disulfide (WS2) via a bottom-up CVD synthesis strategy. An enhanced power conversion efficiency in the architecture of WS2-graphene/n-Si is observed compared to graphene/n-Si. Here, the WS2 induced photon absorption, with only three atoms above the photo-junction, enhanced the short-circuit current density (Jsc), and the reconfiguration of the energy band structure led to effective built-in electric field induced charge carrier transport (enhanced open-circuit voltage (Voc)). Similar to a graphene/n-Si Schottky junction, the WS2-graphene/n-Si double junction exhibited non-linear current density-voltage (J-V) characteristics with a 4-fold increase in Jsc (2.28 mA cm-2 in comparison with 0.52 mA cm-2 for graphene/n-Si) and 40% increase in the Voc (184 mV compared to 130 mV for graphene/n-Si) with a 6-fold increase in the photovoltaic power conversion efficiency. Futuristically, we envision an evolution in 2D heterojunctions with sharp transitions in properties within a few nanometers enabling control on optical absorption, carrier distribution, and band structure for applications including tandem photovoltaic cells and 2D optoelectronic circuit-switches.

7.
ACS Nano ; 12(10): 9931-9939, 2018 Oct 23.
Article in English | MEDLINE | ID: mdl-30226985

ABSTRACT

Hexagonal boron nitride (h-BN) sheets possess an exclusive set of properties, including wide energy band gap, high optical transparency, high dielectric breakdown strength, high thermal conductivity, UV cathodoluminescence, and pronounced thermochemical stability. However, functionalization of large h-BN layers has remained a challenge due to their chemical resistance and unavailable molecular-binding sites. Here we report on the protonation of h-BN via treatment with chlorosulfonic acid that not only exfoliates "large" h-BNs (up to 10 000 µm2) at high yields (∼23%) but also results in their covalent functionalization by introducing four forms of aminated nitrogen (N) sites within the h-BN lattice: sp2-delocalized and sp3-quaternary protonation on internal N sites (>N+═ and >NH+-) and pyridinic-like protonation on the edge N sites (═NH+- and -NH-). The presence of these groups transforms the chemically passive h-BN sheets to their chemically active form, which as demonstrated here can be used as scaffolds for forming composites with plasmonic gold nanoparticles and organic dye molecules. The dispersion of h-BNs exhibits an optical energy band gap of 5.74 eV and a zeta potential of ζ = +36.25 mV at pH = 6.1 (ζmax = +150 mV), confirming high dispersion stability. We envision that these two-dimensional nanomaterials with an atomically packed honeycomb lattice and high-energy band gap will evolve next-generation applications in controlled-UV emission, atomic-tunneling-barrier devices, ultrathin controlled-permeability membranes, and thermochemically resistive transparent coatings.

8.
ACS Appl Mater Interfaces ; 10(31): 26517-26525, 2018 Aug 08.
Article in English | MEDLINE | ID: mdl-30009598

ABSTRACT

Graphene intrinsically hosts charge-carriers with ultrahigh mobility and possesses a high quantum capacitance, which are attractive attributes for nanoelectronic applications requiring graphene-on-substrate base architecture. Most of the current techniques for graphene production rely on the growth on metal catalyst surfaces, followed by a contamination-prone transfer process to put graphene on a desired dielectric substrate. Therefore, a direct graphene deposition process on dielectric surfaces is crucial to avoid polymer-adsorption-related contamination from the transfer process. Here, we present a chemical-diffusion mechanism of a process for transfer-free growth of graphene on silicon-based gate-dielectric substrates via low-pressure chemical vapor deposition. The process relies on the diffusion of catalytically produced carbon radicals through polycrystalline copper (Cu) grain boundaries and their crystallization at the interface of Cu and underneath silicon-based gate-dielectric substrates. The graphene produced exhibits low-defect multilayer domains ( La ∼ 140 nm) with turbostratic orientations as revealed by selected area electron diffraction. Further, graphene growth between Cu and the substrate was 2-fold faster on SiO2/Si(111) substrate than on SiO2/Si(100). The process parameters such as growth temperature and gas compositions (hydrogen (H2)/methane (CH4) flow rate ratio) play critical roles in the formation of high-quality graphene films. The low-temperature back-gating charge transport measurements of the interfacial graphene show density-independent mobility for holes and electrons. Consequently, the analysis of electronic transport at various temperatures reveals a dominant Coulombic scattering, a thermal activation energy (2.0 ± 0.2 meV), and two-dimensional hopping conduction in the graphene field-effect transistor. A band overlapping energy of 2.3 ± 0.4 meV is estimated by employing the simple two-band model.

9.
Nano Lett ; 17(7): 4381-4389, 2017 07 12.
Article in English | MEDLINE | ID: mdl-28586228

ABSTRACT

Binding graphene with auxiliary nanoparticles for plasmonics, photovoltaics, and/or optoelectronics, while retaining the trigonal-planar bonding of sp2 hybridized carbons to maintain its carrier-mobility, has remained a challenge. The conventional nanoparticle-incorporation route for graphene is to create nucleation/attachment sites via "carbon-centered" covalent functionalization, which changes the local hybridization of carbon atoms from trigonal-planar sp2 to tetrahedral sp3. This disrupts the lattice planarity of graphene, thus dramatically deteriorating its mobility and innate superior properties. Here, we show large-area, vapor-phase, "ring-centered" hexahapto (η6) functionalization of graphene to create nucleation-sites for silver nanoparticles (AgNPs) without disrupting its sp2 character. This is achieved by the grafting of chromium tricarbonyl [Cr(CO)3] with all six carbon atoms (sigma-bonding) in the benzenoid ring on graphene to form an (η6-graphene)Cr(CO)3 complex. This nondestructive functionalization preserves the lattice continuum with a retention in charge carrier mobility (9% increase at 10 K); with AgNPs attached on graphene/n-Si solar cells, we report an ∼11-fold plasmonic-enhancement in the power conversion efficiency (1.24%).

10.
ACS Nano ; 11(5): 4985-4994, 2017 05 23.
Article in English | MEDLINE | ID: mdl-28441003

ABSTRACT

Hexagonal boron nitride (h-BN) is an ideal platform for interfacing with two-dimensional (2D) nanomaterials to reduce carrier scattering for high-quality 2D electronics. However, scalable, transfer-free growth of hexagonal boron nitride (h-BN) remains a challenge. Currently, h-BN-based 2D heterostructures require exfoliation or chemical transfer of h-BN grown on metals resulting in small areas or significant interfacial impurities. Here, we demonstrate a surface-chemistry-influenced transfer-free growth of large-area, uniform, and smooth h-BN directly on silicon (Si)-based substrates, including Si, silicon nitride (Si3N4), and silicon dioxide (SiO2), via low-pressure chemical vapor deposition. The growth rates increase with substrate electronegativity, Si < Si3N4 < SiO2, consistent with the adsorption rates calculated for the precursor molecules via atomistic molecular dynamics simulations. Under graphene with high grain density, this h-BN film acts as a polymer-free, planar-dielectric interface increasing carrier mobility by 3.5-fold attributed to reduced surface roughness and charged impurities. This single-step, chemical interaction guided, metal-free growth mechanism of h-BN for graphene heterostructures establishes a potential pathway for the design of complex and integrated 2D-heterostructured circuitry.

11.
J Nanosci Nanotechnol ; 16(6): 6246-51, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27427697

ABSTRACT

Horizontally and vertically oriented few-layer graphenes have been synthesized directly on SiO2 coated Si substrates via thermal and hot-filament chemical vapor deposition, respectively. The effect of the direction of mass flow on the fabrication of graphene film is analysed and a plausible mechanism is proposed. The graphene/p-Si heterojunction is fabricated and tested for its potential in optoelectronic devices. Rectification behaviour is observed at the interface of graphene/p-Si under dark conditions. A dark current of 1.1 mA with an ideality factor of 1.5, in addition of a high rectification ratio of 15.99 at ± 0.5 V is found for the vertically oriented graphene/p-Si heterojunction.

12.
ACS Nano ; 10(9): 8403-12, 2016 09 27.
Article in English | MEDLINE | ID: mdl-27391776

ABSTRACT

Curvature-induced dipole moment and orbital rehybridization in graphene wrinkles modify its electrical properties and induces transport anisotropy. Current wrinkling processes are based on contraction of the entire substrate and do not produce confined or directed wrinkles. Here we show that selective desiccation of a bacterium under impermeable and flexible graphene via a flap-valve operation produces axially aligned graphene wrinkles of wavelength 32.4-34.3 nm, consistent with modified Föppl-von Kármán mechanics (confinement ∼0.7 × 4 µm(2)). Further, an electrophoretically oriented bacterial device with confined wrinkles aligned with van der Pauw electrodes was fabricated and exhibited an anisotropic transport barrier (ΔE = 1.69 meV). Theoretical models were developed to describe the wrinkle formation mechanism. The results obtained show bio-induced production of confined, well-oriented, and electrically anisotropic graphene wrinkles, which can be applied in electronics, bioelectromechanics, and strain patterning.


Subject(s)
Anisotropy , Bacteria , Graphite , Electricity , Nanostructures
13.
ACS Appl Mater Interfaces ; 8(13): 8721-7, 2016 Apr 06.
Article in English | MEDLINE | ID: mdl-27002378

ABSTRACT

Percolating network of mixed 2D nanomaterials (2DNs) can leverage the unique electronic structures of different 2DNs, their interfacial doping, manipulable conduction pathways, and local traps. Here, we report on the percolation mechanism and electro-capacitive transport pathways of mixed-platelet network of hexagonal boron nitride (hBN) and reduced graphene oxide (rGO), two isostructural and isoelectronic 2DNs. The transport mechanism is explained in terms of electron hopping through isolated hBN defect traps between rGO (possibly via electron tunneling/hopping through "funneling" points). With optical bandgaps of 4.57 and 4.08 eV for the hBN-domains and 2.18 eV for the rGO domains, the network of hBN with rGO exhibits Poole-Frenkel emission-based transport with mean hopping gap of 1.12 nm (∼hBN trilayer) and an activation barrier of ∼15 ± 0.7 meV. Further, hBN (1.7 pF) has a 6-fold lower capacitance than 1:1 hBN:rGO, which has a resistance 2 orders of magnitude higher than that of rGO (1.46 MΩ). These carrier transport results can be applied to other multi-2DN networks for development of next-generation functional 2D-devices.

14.
J Nanosci Nanotechnol ; 15(7): 4877-82, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26373050

ABSTRACT

Chemically-derived graphene have been synthesized by modified Hummers method and reduced using sodium borohydride. To explore the potential for photovoltaic applications, graphene/p-silicon (Si) heterojunction devices were fabricated using a simple and cost effective technique called spin coating. The SEM analysis shows the formation of graphene oxide (GO) flakes which become smooth after reduction. The absence of oxygen containing functional groups, as observed in FT-IR spectra, reveals the reduction of GO, i.e., reduced graphene oxide (rGO). It was further confirmed by Raman analysis, which shows slight reduction in G-band intensity with respect to D-band. Hall effect measurement confirmed n-type nature of rGO. Therefore, an effort has been made to simu- late rGO/p-Si heterojunction device by using the one-dimensional solar cell capacitance software, considering the experimentally derived parameters. The detail analysis of the effects of Si thickness, graphene thickness and temperature on the performance of the device has been presented.

15.
J Am Chem Soc ; 137(40): 13060-5, 2015 Oct 14.
Article in English | MEDLINE | ID: mdl-26390364

ABSTRACT

Ultrasmooth hexagonal boron nitride (h-BN) can dramatically enhance the carrier/phonon transport in interfaced transition metal dichalcogenides (TMDs), and amplify the effect of quantum capacitance in field-effect gating. All of the current processes to realize h-BN-based heterostructures involve transfer or exfoliation. Rational chemistries and process techniques are still required to produce large-area, transfer-free, directly grown TMDs/BN heterostructures. Here, we demonstrate a novel boron-oxygen chemistry route for oxide-assisted nucleation and growth of large-area, uniform, and ultrathin h-BN directly on oxidized substrates (B/N atomic ratio = 1:1.16 ± 0.03 and optical band gap = 5.51 eV). These intimately interfaced, van der Waals heterostructures of MoS2/h-BN and WS2/h-BN benefit from 6.27-fold reduced roughness of h-BN in comparison to SiO2. This leads to reduction in scattering from roughness and charged impurities, and enhanced carrier mobility verified by an increase in electrical conductivity (5 times for MoS2/h-BN and 2 times for WS2/h-BN). Further, the heterostructures are devoid of wrinkles and adsorbates, which is critical for 2D nanoelectronics. The versatile process can potentially be extrapolated to realize a variety of heterostructures with complex sandwiched 2D electronic circuitry.

16.
ACS Nano ; 9(3): 2227-30, 2015 Mar 24.
Article in English | MEDLINE | ID: mdl-25774917

ABSTRACT

Controlled nondegenerate doping of two-dimensional semiconductors (2DSs) with their ultraconfined carriers, high quantum capacitance, and surface-sensitive electronics can enable tuning their Fermi levels for rational device design. However, doping techniques for three-dimensional semiconductors, such as ion implantation, cannot be directly applied to 2DSs because they inflict high defect density. In this issue of ACS Nano, Park et al. demonstrate that interfacing 2DSs with substrates having dopants can controllably inject carriers to achieve nondegenerate doping, thus significantly broadening 2DSs' functionality and applications. Futuristically, this can enable complex spatial patterning/contouring of energy levels in 2DSs to form p-n junctions, integrated logic, and opto/electronic devices. The process is also extendable to biocellular-interfaced devices, band-continuum structures, and intricate 2D circuitry.


Subject(s)
Disulfides/chemistry , Molybdenum/chemistry , Semiconductors , Models, Molecular , Molecular Conformation
17.
J Nanosci Nanotechnol ; 14(4): 2816-22, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24734695

ABSTRACT

Disperse Multiwall carbon nanotubes (MWCNTs) are incorporated aqueous N-hydroxy methyl acrylamide, which is subjected to crosslinking to develop a transparent conductive composite free standing film. The effects of the concentration of MWCNTs and temperature on optical and electrical properties of nano-composites are investigated. Interestingly, only 0.06 mg/ml of MWCNTs is sufficient to reach the percolation threshold (Phi) for transition in electrical conductivity up to 10(-4) S/cm, with a visible transmittance over 85%, which is well above the reported for such a low level of MWCNTs loading. The electrical conductivity of the composite was measured at 120 degrees C. It has been observed that electrical conductivity increases significantly with the increase in temperature, signifying the semiconducting nature of nano-composites. Finally, current-voltage (I-V) characteristics show liner behaviour, confirms Ohmic nature of nano-composites and metal contact.

18.
J Nanosci Nanotechnol ; 14(4): 3022-7, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24734728

ABSTRACT

High quality graphene film is fabricated using mechanical exfoliation of highly-oriented pyrolytic graphite. The graphene films on glass substrates are characterized using field-emission scanning electron microscopy, atomic force microscopy, Raman spectroscopy, UV-vis spectroscopy and Fourier transform infrared spectroscopy. A very high intensity ratio of 2D to G-band (to approximately 1.67) and narrow 2D-band full-width at half maximum (to approximately 40 cm(-1)) correspond to the bi-layer graphene formation. The bi-layer graphene/p-GaN/n-InGaN/n-GaN/GaN/sAl2O3 system is studied theoretically using TCAD Silvaco software, in which the properties of exfoliated bi-layer graphene are used as transparent and conductive film, and the device exhibits an efficiency of 15.24% compared to 13.63% for ITO/p-GaN/n-InGaN/n-GaN/GaN/Al2O3 system.

SELECTION OF CITATIONS
SEARCH DETAIL
...