Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Type of study
Publication year range
1.
J Colloid Interface Sci ; 652(Pt B): 1867-1877, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37688933

ABSTRACT

Some very effective antimicrobial coatings exploit copper or cuprous oxide (Cu2O) as the active agent. The aim of this study is to determine which species is the active antimicrobial - dissolved ions, the Cu2O solid, or reactive oxygen species. Copper ions were leached from Cu2O into various solutions and the leachate tested for both dissolved copper and the efficacy in killing Pseudomonas aeruginosa. The concentration of copper species leached from Cu2O into aqueous solution varied greatly with the composition of the aqueous solution. For a range of solution buffers, killing of P. aeruginosa was highly correlated with the concentration of copper in the leachate. Further, 10 µL bacterial suspension droplets were placed on Cu2O coatings, with or without a polymer barrier layer, and tested for bacterial kill. Killing occurred without contact between bacterium and solid, demonstrating that contact with Cu2O is not necessary. We therefore conclude that soluble copper species are the antimicrobial agent, and that the most potent species is Cu+. The solid quickly raises and sustains the concentration of soluble copper species near the bacterium. Killing via soluble copper ions rather than contact should allow copper coatings to kill bacteria even when fouled, which is an important practical consideration.


Subject(s)
Anti-Infective Agents , Copper , Copper/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Infective Agents/pharmacology , Bacteria , Pseudomonas aeruginosa , Ions
2.
Antibiotics (Basel) ; 12(5)2023 May 17.
Article in English | MEDLINE | ID: mdl-37237824

ABSTRACT

Antimicrobial coatings have a finite lifetime because of wear, depletion of the active ingredient, or surface contamination that produces a barrier between the pathogen and the active ingredient. The limited lifetime means that facile replacement is important. Here, we describe a generic method for rapidly applying and reapplying antimicrobial coatings to common-touch surfaces. The method is to deposit an antimicrobial coating on a generic adhesive film (wrap), and then to attach that modified wrap to the common-touch surface. In this scenario, the adhesion of the wrap and antimicrobial efficacy are separated and can be optimized independently. We demonstrate the fabrication of two antimicrobial wraps, both using cuprous oxide (Cu2O) as the active ingredient. The first uses polyurethane (PU) as the polymeric binder and the second uses polydopamine (PDA). Our antimicrobial PU/Cu2O and PDA/Cu2O wraps, respectively, kill >99.98% and >99.82% of the human pathogen, P. aeruginosa, in only 10 min, and each of them kill >99.99% of the bacterium in 20 min. These antimicrobial wraps can be removed and replaced on the same object in <1 min with no tools. Wraps are already frequently used by consumers to coat drawers or cars for aesthetic or protective purposes.

3.
ACS Appl Mater Interfaces ; 15(12): 15120-15128, 2023 Mar 29.
Article in English | MEDLINE | ID: mdl-36920368

ABSTRACT

Antimicrobial coatings can be used to reduce the transmission of infectious agents that are spread by contact. An effective coating should kill microbes in the time between users, which is sometimes minutes or less. Fast killing requires fast transport, and our proposed method of fast transport is a porous coating where the contaminated liquid imbibes (infiltrates) into the pores to achieve rapid contact with active material inside the pores. We test the hypothesis that a porous antimicrobial coating will enable faster inactivation of microorganisms than a planar coating of the same material. We use hydrophilic pores with dimensions of 5-100 µm such that liquid droplets imbibe in seconds, and from there transport distances and times are short, defined by the pore size rather than the droplet size. Our coating has two levels of structure: (A) a porous scaffold and (B) an antimicrobial coating within the pore structure containing the active ingredient. Two scaffolds are studied: stainless steel and poly(methyl methacrylate) (PMMA). The active ingredient is electrolessly deposited copper. To enhance adhesion and growth of copper, a layer of polydopamine (PDA) is deposited on the scaffold prior to deposition of the copper. This porous copper coating kills 99.84% of Pseudomonas aeruginosa within 3 min, which is equivalent to a half-life of 27 s. In contrast, the same layer of PDA/copper on a nonporous coating kills 79.65% in the same time frame, consistent with the hypothesis that the killing rate is increased by the addition of porosity. Using the porous PMMA scaffold, the porous antimicrobial coating kills >99.99% P. aeruginosa in 5 min, which is equivalent to a half-life of 21 s. The higher rate of kill on the porous antimicrobial solid is appropriate for hindering the spread of infectious agents on common-use objects.


Subject(s)
Anti-Infective Agents , Polymethyl Methacrylate , Porosity , Copper/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Infective Agents/pharmacology
4.
ACS Appl Mater Interfaces ; 14(7): 8718-8727, 2022 Feb 23.
Article in English | MEDLINE | ID: mdl-35138100

ABSTRACT

Transparent antimicrobial coatings can maintain the aesthetic appeal of surfaces and the functionality of a touch-screen while adding the benefit of reducing disease transmission. We fabricated an antimicrobial coating of silver oxide particles in a silicate matrix on glass. The matrix was grown by a modified Stöber sol-gel process with vapor-phase water and ammonia. A coating on glass with 2.4 mg of Ag2O per mm2 caused a reduction of 99.3% of SARS-CoV-2 and >99.5% of Pseudomonas aeruginosa, Staphylococcus aureus, and methicillin-resistant Staphylococcus aureus compared to the uncoated glass after 1 h. We envisage that screen protectors with transparent antimicrobial coatings will find particular application to communal touch-screens, such as in supermarkets and other check-out or check-in facilities where a number of individuals utilize the same touch-screen in a short interval.


Subject(s)
Anti-Infective Agents/chemistry , Bacterial Infections/prevention & control , COVID-19/prevention & control , Oxides/chemistry , Silver Compounds/chemistry , Ammonia/chemistry , Anti-Infective Agents/pharmacology , Bacterial Infections/microbiology , COVID-19/virology , Glass/chemistry , Humans , Methicillin-Resistant Staphylococcus aureus/drug effects , Methicillin-Resistant Staphylococcus aureus/pathogenicity , Oxides/pharmacology , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/pathogenicity , SARS-CoV-2/drug effects , SARS-CoV-2/pathogenicity , Silicates/chemistry , Silver Compounds/pharmacology , Water/chemistry
5.
ACS Appl Mater Interfaces ; 13(46): 54706-54714, 2021 Nov 24.
Article in English | MEDLINE | ID: mdl-34766745

ABSTRACT

Antimicrobial coatings are one method to reduce the spread of microbial diseases. Transparent coatings preserve the visual properties of surfaces and are strictly necessary for applications such as antimicrobial cell phone screens. This work describes transparent coatings that inactivate microbes within minutes. The coatings are based on a polydopamine (PDA) adhesive, which has the useful property that the monomer can be sprayed, and then the monomer polymerizes in a conformal film at room temperature. Two coatings are described (1) a coating where PDA is deposited first and then a thin layer of copper is grown on the PDA by electroless deposition (PDA/Cu) and (2) a coating where a suspension of Cu2O particles in a PDA solution is deposited in a single step (PDA/Cu2O). In the second coating, PDA menisci bind Cu2O particles to the solid surface. Both coatings are transparent and are highly efficient in inactivating microbes. PDA/Cu kills >99.99% of Pseudomonas aeruginosa and 99.18% of methicillin-resistant Staphylococcus aureus (MRSA) in only 10 min and inactivates 99.98% of SARS-CoV-2 virus in 1 h. PDA/Cu2O kills 99.94% of P. aeruginosa and 96.82% of MRSA within 10 min and inactivates 99.88% of SARS-CoV-2 in 1 h.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antiviral Agents/pharmacology , Drug Resistance, Microbial/drug effects , SARS-CoV-2/drug effects , COVID-19/virology , Humans , Methicillin-Resistant Staphylococcus aureus/drug effects , Pseudomonas aeruginosa/drug effects , Surface Properties
6.
Sci Rep ; 11(1): 22868, 2021 11 24.
Article in English | MEDLINE | ID: mdl-34819522

ABSTRACT

Transfer of SARS-CoV-2 from solids to fingers is one step in infection via contaminated solids, and the possibility of infection from this route has driven calls for increased frequency of handwashing during the COVID-19 pandemic. To analyze this route of infection, we measured the percentage of SARS-CoV-2 that was transferred from a solid to an artificial finger. A droplet of SARS-CoV-2 suspension (1 µL) was placed on a solid, and then artificial skin was briefly pressed against the solid with a light force (3 N). Transfer from a variety of solids was detected, and transfer from the non-porous solids, glass, stainless steel, and Teflon, was substantial when the droplet was still wet. The viral titer for the finger was 13-16% or 0.8-0.9 log less than for the input droplet. Transfer still occurred after the droplet evaporated, but was smaller, 3-9%. We found a lower level of transfer from porous solids but did not find a significant effect of solid wettability for non-porous solids.


Subject(s)
COVID-19/transmission , Disease Transmission, Infectious/prevention & control , SARS-CoV-2/metabolism , COVID-19/metabolism , Equipment Contamination/prevention & control , Equipment Contamination/statistics & numerical data , Humans , SARS-CoV-2/pathogenicity , Skin/virology , Viral Load
7.
ACS Biomater Sci Eng ; 7(11): 5022-5027, 2021 11 08.
Article in English | MEDLINE | ID: mdl-34613703

ABSTRACT

We developed antimicrobial coatings from ZnO particles that reduce the infectivity of SARS-CoV-2 suspensions by >99.9% in 1 h. The advantage of a coating is that it can be applied to a variety of objects, e.g., hand rails and door knobs, to hinder the spread of disease. Two porous coatings were prepared: one from submicrometer zinc oxide particles bound with silica menisci and the other from zinc oxide tetrapods bound with polyurethane. Experiments on glass coatings show that infectivity depends on porosity for hydrophilic materials, wherein aqueous droplets are imbibed into the pores.


Subject(s)
COVID-19 , Zinc Oxide , Anti-Bacterial Agents , Humans , SARS-CoV-2 , Suspensions , Zinc Oxide/pharmacology
8.
Curr Opin Colloid Interface Sci ; 55: 101481, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34149298

ABSTRACT

The COVID-19 pandemic had a major impact on life in 2020 and 2021. One method of transmission occurs when the causative virus, SARS-CoV-2, contaminates solids. Understanding and controlling the interaction with solids is thus potentially important for limiting the spread of the disease. We review work that describes the prevalence of the virus on common objects, the longevity of the virus on solids, and surface coatings that are designed to inactivate the virus. Engineered coatings have already succeeded in producing a large reduction in viral infectivity from surfaces. We also review work describing inactivation on facemasks and clothing and discuss probable mechanisms of inactivation of the virus at surfaces.

9.
ACS Appl Mater Interfaces ; 13(5): 5919-5928, 2021 Feb 10.
Article in English | MEDLINE | ID: mdl-33480246

ABSTRACT

The ongoing COVID-19 pandemic has created a need for coatings that reduce infection from SARS-CoV-2 via surfaces. Such a coating could be used on common touch surfaces (e.g., door handles and railings) to reduce both disease transmission and fear of touching objects. Herein, we describe the design, fabrication, and testing of a cupric oxide anti-SARS-CoV-2 coating. Rapid loss of infectivity is an important design criterion, so a porous hydrophilic coating was created to allow rapid infiltration of aqueous solutions into the coating where diffusion distances to the cupric oxide surface are short and the surface area is large. The coating was deposited onto glass from a dispersion of cuprous oxide in ethanol and then thermally treated at 700 °C for 2 h to produce a CuO coating that is ≈30 µm thick. The heat treatment oxidized the cuprous oxide to cupric oxide and sintered the particles into a robust film. The SARS-CoV-2 infectivity from the CuO film was reduced by 99.8% in 30 min and 99.9% in 1 h compared to that from glass. The coating remained hydrophilic for at least 5 months, and there was no significant change in the cross-hatch test of robustness after exposure to 70% ethanol or 3 wt % bleach.


Subject(s)
COVID-19/prevention & control , COVID-19/virology , Copper/pharmacology , SARS-CoV-2/physiology , Animals , Chlorocebus aethiops , Humans , Photoelectron Spectroscopy , SARS-CoV-2/drug effects , Surface Properties , Vero Cells , Virus Inactivation/drug effects , X-Ray Diffraction
10.
ACS Appl Mater Interfaces ; 12(31): 34723-34727, 2020 Aug 05.
Article in English | MEDLINE | ID: mdl-32657566

ABSTRACT

SARS-CoV-2, the virus that causes the disease COVID-19, remains viable on solids for periods of up to 1 week, so one potential route for human infection is via exposure to an infectious dose from a solid. We have fabricated and tested a coating that is designed to reduce the longevity of SARS-CoV-2 on solids. The coating consists of cuprous oxide (Cu2O) particles bound with polyurethane. After 1 h on coated glass or stainless steel, the viral titer was reduced by about 99.9% on average compared to the uncoated sample. An advantage of a polyurethane-based coating is that polyurethane is already used to coat a large number of everyday objects. Our coating adheres well to glass and stainless steel as well as everyday items that people may fear to touch during a pandemic, such as a doorknob, a pen, and a credit card keypad button. The coating performs well in the cross-hatch durability test and remains intact and active after 13 days of being immersed in water or after exposure to multiple cycles of exposure to the virus and disinfection.


Subject(s)
Betacoronavirus/genetics , Coronavirus Infections/genetics , Pandemics , Pneumonia, Viral/genetics , Betacoronavirus/pathogenicity , COVID-19 , Copper/chemistry , Copper/metabolism , Coronavirus Infections/virology , Humans , Pneumonia, Viral/virology , Polyurethanes/chemistry , Polyurethanes/metabolism , SARS-CoV-2 , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...