Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 28(1): 738-753, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32827118

ABSTRACT

In order to increase CO2/N2 selectivity of polyimide (PI) dense membranes, task-specific ionic liquid (TSIL), 1-aminoethyl-3-buthylimidazolium hexafluorophosphate ([NH2ebim][PF6]), has been grafted to polymer chains as large side groups by forming the structure of Schiff base for the first time. The modified membranes were characterized by Fourier transform infrared spectroscopy (FT-IR), elemental analysis, thermogravimetric analysis (TGA), X-ray diffraction (XRD), dynamic thermomechanical analysis (DMA), and stress-strain testing. The results showed that TSIL had been successfully linked to PI chains by forming "C=N." The modified membranes had more free volume, which was favorable to the improvement of CO2 permeability. The reduction of spin degree of freedom means the rigidity increment of polymer chains, which indicated that the selectivity of CO2/N2 can be enhanced. As a result, CO2 permeability of the modified membrane (TSIL-0.8 wt%) was increased from 5.28 to 10.2 Barrer, and CO2/N2 selectivity was increased from 21.9 to 92.8 at 30 °C and 0.1 MPa. Meanwhile, the effects of different feed pressures (0.1-0.6 MPa) and different operating temperatures (30-60 °C) on CO2/N2 transport properties were also investigated, and it was found that the separation performances of the modified membranes had already exceeded Robeson's upper bound.


Subject(s)
Ionic Liquids , Carbon Dioxide , Polymers , Schiff Bases , Spectroscopy, Fourier Transform Infrared
2.
Environ Sci Pollut Res Int ; 26(32): 33607-33620, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31587163

ABSTRACT

This study aimed to improve the pore size, porosity, and hydrophobicity of polyvinylidene fluoride (PVDF) membranes for desalination by vacuum membrane distillation (VMD). New membranes were prepared via etching PVDF/calcium carbonate (CaCO3) composite membranes using hydrochloric acid (HCl), depending on the chemical reaction of CaCO3 and HCl. Etched membranes were characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), differential scanning calorimetry (DSC), contact angle (CA), atomic force microscope (AFM), and scanning electron microscopy (SEM). The results showed that CaCO3 of composite membranes was completely reacted by 1.5 mol/L HCl after composite membranes had been etched 90 min. The crystallinity of etched membranes was the same as that of PVDF/CaCO3 composite membranes, and no new functional groups appeared in etched membranes, which indicated that etched membranes had good chemical stability. The surface roughness increased and led to the increase of contact angle, which means the hydrophobicity of etched membranes was enhanced. As a result, the increment of permeation flux had been improved in a VMD process. It was found that the maximum flux of etched membrane was enhanced and up to 1.65 times of composite membrane when the concentration of sodium chloride (NaCl) solution was 5.0 wt%, and the maximum flux reached up to 30.9 kg m-2 h-1.


Subject(s)
Hydrochloric Acid/chemistry , Membranes, Artificial , Polyvinyls/chemistry , Calcium Carbonate/chemistry , Distillation , Hydrophobic and Hydrophilic Interactions , Microscopy, Electron, Scanning , Porosity , Sodium Chloride , Spectroscopy, Fourier Transform Infrared
SELECTION OF CITATIONS
SEARCH DETAIL
...