Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
iScience ; 27(3): 109291, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38450151

ABSTRACT

The pursuit of cost-effective, high-voltage electricity generators activated by droplets represents a new frontier in hydropower technology. This study presents an economical method for crafting droplet generators using common materials such as solid polytetrafluoroethylene (PTFE) films and readily available tapes, eliminating the need for specialized cleanroom facilities. A thorough investigation into voltage-limiting factors, encompassing device capacitance and induced electrode charges, reveals specific areas with potential for optimization. A substantial enhancement in the open-circuit voltage (Voc) was achieved, reaching approximately 282.2 ± 27.9 V-an impressive increase of around 60 V compared to earlier benchmarks. One device showcased its capability to power 100 LEDs concurrently, underscoring its efficacy. Ten such devices created diverse luminous patterns with uniform light intensity for each LED, showcasing the practical potential of the approach. The methodology's cost-effectiveness results in a remarkable cost reduction compared to solution-based materials, paving the way for the widespread adoption of large-scale water droplet energy harvesting.

2.
Adv Sci (Weinh) ; 5(8): 1800222, 2018 Aug.
Article in English | MEDLINE | ID: mdl-30128237

ABSTRACT

100% efficiency is the ultimate goal for all energy harvesting and conversion applications. However, no energy conversion process is reported to reach this ideal limit before. Here, an example with near perfect energy conversion efficiency in the process of solar vapor generation below room temperature is reported. Remarkably, when the operational temperature of the system is below that of the surroundings (i.e., under low density solar illumination), the total vapor generation rate is higher than the upper limit that can be produced by the input solar energy because of extra energy taken from the warmer environment. Experimental results are provided to validate this intriguing strategy under 1 sun illumination. The best measured rate is ≈2.20 kg m-2 h-1 under 1 sun illumination, well beyond its corresponding upper limit of 1.68 kg m-2 h-1 and is even faster than the one reported by other systems under 2 sun illumination.

3.
Langmuir ; 26(24): 18606-11, 2010 Dec 21.
Article in English | MEDLINE | ID: mdl-21082795

ABSTRACT

Porous and hollow particles are widely used in pharmaceuticals, as solid phases for chromatography, as catalyst supports, in bioanalytical assays and medical diagnostics, and in many other applications. By controlling size, shape, and chemistry, it is possible to tune the physical and chemical properties of the particles. In some applications of millimeter-scale hollow shells, such as in high energy density physics, controlling the shell thickness uniformity (concentricity) and roundness (sphericity) becomes particularly important. In this work, we demonstrate the feasibility of using electric field-driven droplet centering to form highly spherical and concentric polymerizable double emulsion (DE) droplets that can be subsequently photopolymerized into polymer shells. Specifically, when placed under the influence of an ∼6 × 10(4) V(rms)/m field at 20 MHz, DE droplets, consisting of silicone oil as the inner droplet and tripropylene glycol diacrylate with a photoinitiator in N,N-dimethylacetamide as the outer droplet, suspended in ambient silicone oil, were found to undergo electric field-driven centering into droplets with ≥98% sphericity and ∼98% concentricity. The centered DE droplets were photopolymerized in the presence of the electric field. The high degrees of sphericity and concentricity were maintained in the polymerized particles. The poly(propylene glycol diacrylate) capsules are just within the sphericity requirements needed for inertial confinement fusion experiments. They were slightly outside the concentricity requirement. These results suggest that electric field-driven centering and polymerization of double emulsions could be very useful for synthesizing hollow polymer particles for applications in high energy density physics experiments and other applications of concentric polymer shells.


Subject(s)
Acrylic Resins/chemistry , Electricity , Polymerization , Emulsions , Feasibility Studies , Polymerization/radiation effects , Time Factors , Ultraviolet Rays
SELECTION OF CITATIONS
SEARCH DETAIL
...