Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Rapid Commun Mass Spectrom ; 28(8): 939-47, 2014 Apr 30.
Article in English | MEDLINE | ID: mdl-24623699

ABSTRACT

RATIONALE: High-throughput methods for identification and quantification of stabilizers in plastic materials are of significant importance in order to evaluate the suitability of materials of unknown origin for specific application areas, to clarify reasons for failure of materials, or for comparison of materials from different sources. METHODS: In the present study, a highly sensitive and rapid flow injection method coupled to selected reaction monitoring mass spectrometry (MS) for comprehensive analysis of 21 polymer stabilizers in polyolefins is demonstrated. A critical factor for this approach is the choice of ionization mode, as no separation was performed prior to MS detection. Differences between several ionization techniques regarding matrix effects are reported. RESULTS: Atmospheric pressure chemical ionization was found to be the most suitable ionization technique, with no significant matrix effects observed. The developed method has a linear dynamic range over two to three orders of magnitude with correlation coefficients better than 0.99 for all studied analytes. Following a multistep sample preparation protocol, the method allowed quantification down to minimum values of between 0.0001 and 0.04 wt% depending on the type of stabilizer. Results were compared to an established chromatographic approach and showed very good correlation (bias below 7.5%). CONCLUSIONS: The applicability of the optimized method could be demonstrated for both the qualitative and quantitative determination of polymer stabilizers in polyolefins. Furthermore, the described approach yields a complete analysis in a much shorter time than can be achieved with commonly applied chromatographic methods.


Subject(s)
High-Throughput Screening Assays/methods , Polymers/chemistry , Tandem Mass Spectrometry/methods , Atmospheric Pressure , Calibration , Limit of Detection , Polymers/standards , Reproducibility of Results
2.
Anal Bioanal Chem ; 405(21): 6879-84, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23800840

ABSTRACT

In the present study, the applicability of rapid flow injection-triple quadrupole mass spectrometry for simultaneous qualitative screening of different classes of stabilizers in polymeric materials is demonstrated. Electrospray ionization and atmospherical pressure chemical ionization were compared, whereby the latter yielded generally poorer detection limits and only single charged ions that were for some analytes beyond the mass range of the quadrupole mass spectrometry. Positive electrospray ionization allowed the interference-free monitoring of multiple reaction monitoring transitions selective for 36 commonly used stabilizers without chromatographic separation. Real polymer samples were extracted by toluene and the method allowed the detection of analytes down to 0.00001-0.025 wt% depending on the stabilizer.

3.
J Am Soc Mass Spectrom ; 23(6): 1120-5, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22451334

ABSTRACT

MALDI-TOF MS is used for the qualitative analysis of seven different polymer additives directly from the polymer without tedious sample pretreatment. Additionally, by using a solid sample preparation technique, which avoids the concentration gradient problems known to occur with dried droplets and by adding tetraphenylporphyrine as an internal standard to the matrix, it is possible to perform quantitative analysis of additives directly from the polymer sample. Calibration curves for Tinuvin 770, Tinuvin 622, Irganox 1024, Irganox 1010, Irgafos 168, and Chimassorb 944 are presented, showing coefficients of determination between 0.911 and 0.990.

4.
J Chromatogr A ; 1218(31): 5180-6, 2011 Aug 05.
Article in English | MEDLINE | ID: mdl-21683955

ABSTRACT

Direct analysis in real time (DART) time-of-flight mass spectrometry (TOF-MS) has been tested for its suitability as a detector for gradient elution HPLC. Thereby a strong dependency of signal intensity on the amount of organic solvent present in the eluent could be observed. Adding a make-up liquid (iso-propanol) post-column to the HPLC effluent greatly enhanced detection limits for early eluting compounds. Limits of detection achieved employing this approach were in the range of 7-27 µg L(-1) for the parabene test mixture and 15-87 µg L(-1) for the pharmaceuticals. In further investigations DART ionization was compared to several other widely used atmospheric pressure ionization methods with respect to signal suppression phenomena occurring in when samples with problematic matrices are analyzed. For this purpose extracts from environmental and waste water samples were selected as model matrices which were subsequently spiked with a set of six substances commonly present in personal care products as well as six pharmaceuticals at concentration levels between 100 µg L(-1) and 500 µg L(-1) corresponding to 100 ng L(-1) and 500 ng L(-1) respectively in the original sample. With ionization suppression of less than 11% for most analytes investigated, DART ionization showed similar to even somewhat superior behavior compared to atmospheric pressure chemical ionization (APCI) and atmospheric pressure photo ionization (APPI) for the Danube river water extract; for the more challenging matrix of the sewage plant effluent extract DART provided better results with ion suppression being less than 11% for 9 out of 12 analytes while values for APCI were lying between 20% and >90%. Electrospray ionization (ESI) was much more affected by suppression effects than DART with values between 26% and 80% for Danube river water; in combination with the sewage plant effluent matrix suppression >50% was observed for all analytes.


Subject(s)
Chromatography, High Pressure Liquid/methods , Mass Spectrometry/methods , Pharmaceutical Preparations/analysis , Sewage/analysis , Water Pollutants, Chemical/analysis , Chromatography, High Pressure Liquid/instrumentation , Mass Spectrometry/instrumentation
SELECTION OF CITATIONS
SEARCH DETAIL
...