Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Publication year range
1.
Chinese Medical Journal ; (24): 2430-2437, 2019.
Article in English | WPRIM (Western Pacific) | ID: wpr-774903

ABSTRACT

BACKGROUND@#Glioma is the most common primary malignant tumor in the central nervous system. Because of the resistance of glioma to chemoradiotherapy and its aggressive growth, the survival rate of patients with glioma has not improved. This study aimed to disclose the effect of retinol dehydrogenase 10 (RDH10) on the migration and invasion of glioma cells, and to explore the potential mechanism.@*METHODS@#Reverse transcription-polymerase chain reaction (RT-PCR) was used to determine the expression levels of RDH10 in healthy glial cells and glioma cells. Human glioma cell strains, U87 and U251, were infected with negative control or RDH10-interfering lentiviruses. RT-PCR and Western blotting were performed to determine the knockdown efficiency. Scratch and transwell assays were used to assess cell migration and invasion after RDH10 knockdown. Finally, changes in transforming growth factor-β (TGF-β)/SMAD signaling pathway-related expression were examined by Western blotting. Differences between groups were analyzed by one-way analysis of variance.@*RESULTS@#RDH10 was highly expressed in glioma cells. Compared with the control group, RDH10 knockdown significantly reduced RDH10 messenger RNA and protein expression levels in U87 and U251 glioma cells (U87: 1.00 ± 0.08 vs. 0.22 ± 0.02, t = 16.55, P < 0.001; U251: 1.00 ± 0.17 vs. 0.39 ± 0.01, t = 6.30, P < 0.001). The scratch assay indicated that compared with the control group, RDH10 knockdown significantly inhibited the migration of glioma cells (U87: 1.00% ± 0.04% vs. 2.00% ± 0.25%, t = 6.08, P < 0.01; U251: 1.00% ± 0.11% vs. 2.48% ± 0.31%, t = 5.79, P < 0.01). Furthermore, RDH10 knockdown significantly inhibited the invasive capacity of glioma cells (U87: 97.30 ± 7.01 vs. 13.70 ± 0.58, t = 20.36, P < 0.001; U251: 96.20 ± 7.10 vs. 18.30 ± 2.08, t = 18.51, P < 0.001). Finally, Western blotting demonstrated that compared with the control group, downregulation of RDH10 significantly inhibited TGF-β expression, phosphorylated SMAD2, and phosphorylated SMAD3 (TGF-β: 1.00 ± 0.10 vs. 0.53 ± 0.06, t = 7.05, P < 0.01; phosphorylated SMAD2: 1.00 ± 0.20 vs. 0.42 ± 0.17, t = 4.01, P < 0.01; phosphorylated SMAD3: 1.00 ± 0.18 vs. 0.41 ± 0.12, t = 4.12, P < 0.01).@*CONCLUSION@#RDH10 knockdown might inhibit metastasis of glioma cells via the TGF-β/SMAD signaling pathway.

2.
Chinese Medical Journal ; (24): 2430-2437, 2019.
Article in English | WPRIM (Western Pacific) | ID: wpr-803077

ABSTRACT

Background@#Glioma is the most common primary malignant tumor in the central nervous system. Because of the resistance of glioma to chemoradiotherapy and its aggressive growth, the survival rate of patients with glioma has not improved. This study aimed to disclose the effect of retinol dehydrogenase 10 (RDH10) on the migration and invasion of glioma cells, and to explore the potential mechanism.@*Methods@#Reverse transcription-polymerase chain reaction (RT-PCR) was used to determine the expression levels of RDH10 in healthy glial cells and glioma cells. Human glioma cell strains, U87 and U251, were infected with negative control or RDH10-interfering lentiviruses. RT-PCR and Western blotting were performed to determine the knockdown efficiency. Scratch and transwell assays were used to assess cell migration and invasion after RDH10 knockdown. Finally, changes in transforming growth factor-β (TGF-β)/SMAD signaling pathway-related expression were examined by Western blotting. Differences between groups were analyzed by one-way analysis of variance.@*Results@#RDH10 was highly expressed in glioma cells. Compared with the control group, RDH10 knockdown significantly reduced RDH10 messenger RNA and protein expression levels in U87 and U251 glioma cells (U87: 1.00 ± 0.08 vs. 0.22 ± 0.02, t= 16.55, P < 0.001; U251: 1.00 ± 0.17 vs. 0.39 ± 0.01, t= 6.30, P < 0.001). The scratch assay indicated that compared with the control group, RDH10 knockdown significantly inhibited the migration of glioma cells (U87: 1.00% ± 0.04% vs. 2.00% ± 0.25%, t= 6.08, P < 0.01; U251: 1.00% ± 0.11% vs. 2.48% ± 0.31%, t= 5.79, P < 0.01). Furthermore, RDH10 knockdown significantly inhibited the invasive capacity of glioma cells (U87: 97.30 ± 7.01 vs. 13.70 ± 0.58, t = 20.36, P < 0.001; U251: 96.20 ± 7.10 vs. 18.30 ± 2.08, t = 18.51, P < 0.001). Finally, Western blotting demonstrated that compared with the control group, downregulation of RDH10 significantly inhibited TGF-β expression, phosphorylated SMAD2, and phosphorylated SMAD3 (TGF-β: 1.00 ± 0.10 vs. 0.53 ± 0.06, t= 7.05, P < 0.01; phosphorylated SMAD2: 1.00 ± 0.20 vs. 0.42 ± 0.17, t= 4.01, P < 0.01; phosphorylated SMAD3: 1.00 ± 0.18 vs. 0.41 ± 0.12, t= 4.12, P < 0.01).@*Conclusion@#RDH10 knockdown might inhibit metastasis of glioma cells via the TGF-β/SMAD signaling pathway.

3.
Chinese Journal of Cancer ; (12): 794-804, 2011.
Article in English | WPRIM (Western Pacific) | ID: wpr-294463

ABSTRACT

Tumor-induced osteomalacia (TIO), or oncogenic osteomalacia (OOM), is a rare acquired paraneoplastic disease characterized by renal phosphate wasting and hypophosphatemia. Recent evidence shows that tumor-overexpressed fibroblast growth factor 23 (FGF23) is responsible for the hypophosphatemia and osteomalacia. The tumors associated with TIO are usually phosphaturic mesenchymal tumor mixed connective tissue variants (PMTMCT). Surgical removal of the responsible tumors is clinically essential for the treatment of TIO. However, identifying the responsible tumors is often difficult. Here, we report a case of a TIO patient with elevated serum FGF23 levels suffering from bone pain and hypophosphatemia for more than three years. A tumor was finally located in first metacarpal bone by octreotide scintigraphy and she was cured by surgery. After complete excision of the tumor, serum FGF23 levels rapidly decreased, dropping to 54.7% of the preoperative level one hour after surgery and eventually to a little below normal. The patient's serum phosphate level rapidly improved and returned to normal level in four days. Accordingly, her clinical symptoms were greatly improved within one month after surgery. There was no sign of tumor recurrence during an 18-month period of follow-up. According to pathology, the tumor was originally diagnosed as "lomangioma" based upon a biopsy sample, "proliferative giant cell tumor of tendon sheath" based upon sections of tumor, and finally diagnosed as PMTMCT by consultation one year after surgery. In conclusion, although an extremely rare disease, clinicians and pathologists should be aware of the existence of TIO and PMTMCT, respectively.


Subject(s)
Female , Humans , Middle Aged , Bone Neoplasms , Blood , Diagnostic Imaging , Pathology , General Surgery , Fibroblast Growth Factors , Blood , Follow-Up Studies , Hypophosphatemia , Blood , Diagnostic Imaging , Pathology , General Surgery , Mesenchymoma , Blood , Diagnostic Imaging , Pathology , General Surgery , Metacarpal Bones , Neoplasms, Connective Tissue , Blood , Diagnostic Imaging , Pathology , General Surgery , Osteomalacia , Blood , Diagnostic Imaging , Pathology , General Surgery , Phosphates , Blood , Radiography
4.
Chinese Journal of Neuromedicine ; (12): 485-488, 2011.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1033269

ABSTRACT

Objective To explore the treatment methods and surgical techniques of the third ventricle tumor combined with hydrocephalus under neuroendoscope. Methods The clinical data and imaging findings of 4 patients with third ventricle tumor combined with hydrocephalus, treated with surgery under neuroendoscopy, were retrospectively analyzed; and related literatures were reviewed to conclude the surgical experiences and skills. Results Three of the 4 patients were performed surgery only by neuroendoscopy, and 1 by neuroendoscopic auxiliary microscope for the tumor complete resection. The clinical symptoms improved obviously after the surgery, and no significant complications and no dead case were noted.We followed up the 4 patients for 3-18 months; MRI showed that the tumor did not relapse and the hydrocephalus got improvement. Conclusion Endoscopic navigation can help to directly reach the locations of third ventricle tumor and decrease the unnecessary damage, which enjoys its advantages in tumor resection,relieving obstructive hydrocephalus and rebuilding the cerebrospinal fluid circulation, indicating that surgery under neuroendoscope is a safe, effective and minimally invasive method.

SELECTION OF CITATIONS
SEARCH DETAIL