Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Emerg Microbes Infect ; 13(1): 2373313, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38946528

ABSTRACT

Rift Valley fever (RVF) is a mosquito-borne zoonotic disease caused by RVF virus (RVFV). RVFV infections in humans are usually asymptomatic or associated with mild febrile illness, although more severe cases of haemorrhagic disease and encephalitis with high mortality also occur. Currently, there are no licensed human vaccines available. The safety and efficacy of a genetically engineered four-segmented RVFV variant (hRVFV-4s) as a potential live-attenuated human vaccine has been tested successfully in mice, ruminants, and marmosets though the correlates of protection of this vaccine are still largely unknown. In the present study, we have assessed hRVFV-4s-induced humoral and cellular immunity in a mouse model of RVFV infection. Our results confirm that a single dose of hRVFV-4s is highly efficient in protecting naïve mice from developing severe disease following intraperitoneal challenge with a highly virulent RVFV strain and data show that virus neutralizing (VN) serum antibody titres in a prime-boost regimen are significantly higher compared to the single dose. Subsequently, VN antibodies from prime-boost-vaccinated recipients were shown to be protective when transferred to naïve mice. In addition, hRVFV-4s vaccination induced a significant virus-specific T cell response as shown by IFN-γ ELISpot assay, though these T cells did not provide significant protection upon passive transfer to naïve recipient mice. Collectively, this study highlights hRVFV-4s-induced VN antibodies as a major correlate of protection against lethal RVFV infection.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , Rift Valley Fever , Rift Valley fever virus , Vaccines, Attenuated , Viral Vaccines , Animals , Rift Valley fever virus/immunology , Rift Valley fever virus/genetics , Rift Valley Fever/prevention & control , Rift Valley Fever/immunology , Viral Vaccines/immunology , Viral Vaccines/administration & dosage , Mice , Antibodies, Viral/blood , Antibodies, Viral/immunology , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Female , Vaccines, Attenuated/immunology , Vaccines, Attenuated/administration & dosage , Disease Models, Animal , Immunity, Cellular , T-Lymphocytes/immunology , Immunity, Humoral , Mice, Inbred BALB C , Interferon-gamma/immunology , Vaccination
2.
Vaccines (Basel) ; 12(1)2024 Jan 20.
Article in English | MEDLINE | ID: mdl-38276677

ABSTRACT

Tick-borne encephalitis (TBE) is a serious neurological disease caused by TBE virus (TBEV). Because antiviral treatment options are not available, vaccination is the key prophylactic measure against TBEV infections. Despite the availability of effective vaccines, cases of vaccination breakthrough infections have been reported. The multienzymatic non-structural protein 3 (NS3) of orthoflaviviruses plays an important role in polyprotein processing and virus replication. In the present study, we evaluated NS3 of TBEV as a potential vaccine target for the induction of protective immunity. To this end, a recombinant modified vaccinia virus Ankara that drives the expression of the TBEV NS3 gene (MVA-NS3) was constructed. MVA-NS3 was used to immunize C57BL/6 mice. It induced NS3-specific immune responses, in particular T cell responses, especially against the helicase domain of NS3. However, MVA-NS3-immunized mice were not protected from subsequent challenge infection with a lethal dose of the TBEV strain Neudoerfl, indicating that in contrast to immunity to prME and NS1, NS3-specific immunity is not an independent correlate of protection against TBEV in this mouse model.

3.
Front Immunol ; 14: 1177324, 2023.
Article in English | MEDLINE | ID: mdl-37483628

ABSTRACT

Introduction: Tick-borne encephalitis virus (TBEV) is one of the most relevant tick-transmitted neurotropic arboviruses in Europe and Asia and the causative agent of tick-borne encephalitis (TBE). Annually more than 10,000 TBE cases are reported despite having vaccines available. In Europe, the vaccines FSME-IMMUN® and Encepur® based on formaldehyde-inactivated whole viruses are licensed. However, demanding vaccination schedules contribute to sub-optimal vaccination uptake and breakthrough infections have been reported repeatedly. Due to its immunogenic properties as well as its role in viral replication and disease pathogenesis, the non-structural protein 1 (NS1) of flaviviruses has become of interest for non-virion based flavivirus vaccine candidates in recent years. Methods: Therefore, immunogenicity and protective efficacy of TBEV NS1 expressed by neuraminidase (NA)-deficient Influenza A virus (IAV) or Modified Vaccinia virus Ankara (MVA) vectors were investigated in this study. Results: With these recombinant viral vectors TBEV NS1-specific antibody and T cell responses were induced. Upon heterologous prime/boost regimens partial protection against lethal TBEV challenge infection was afforded in mice. Discussion: This supports the inclusion of NS1 as a vaccine component in next generation TBEV vaccines.


Subject(s)
Encephalitis Viruses, Tick-Borne , Encephalitis, Tick-Borne , Influenza Vaccines , Influenza, Human , Orthomyxoviridae , Animals , Mice , Humans , Vaccinia virus , Antibodies, Viral , Influenza, Human/prevention & control , Immunity, Cellular
4.
Front Immunol ; 14: 1182963, 2023.
Article in English | MEDLINE | ID: mdl-37153588

ABSTRACT

Introduction: Tick-borne encephalitis virus (TBEV) is an important human pathogen that can cause a serious disease involving the central nervous system (tick-borne encephalitis, TBE). Although approved inactivated vaccines are available, the number of TBE cases is rising, and breakthrough infections in fully vaccinated subjects have been reported in recent years. Methods: In the present study, we generated and characterized a recombinant Modified Vaccinia virus Ankara (MVA) for the delivery of the pre-membrane (prM) and envelope (E) proteins of TBEV (MVA-prME). Results: MVA-prME was tested in mice in comparison with a licensed vaccine FSME-IMMUN® and proved to be highly immunogenic and afforded full protection against challenge infection with TBEV. Discussion: Our data indicate that MVA-prME holds promise as an improved next-generation vaccine for the prevention of TBE.


Subject(s)
Encephalitis Viruses, Tick-Borne , Viral Vaccines , Humans , Animals , Mice , Encephalitis Viruses, Tick-Borne/genetics , Antibodies, Neutralizing , Antibodies, Viral , Vaccinia virus/genetics
5.
Front Immunol ; 14: 1134371, 2023.
Article in English | MEDLINE | ID: mdl-36926332

ABSTRACT

Introduction: Naturally attenuated Langat virus (LGTV) and highly pathogenic tick-borne encephalitis virus (TBEV) share antigenically similar viral proteins and are grouped together in the same flavivirus serocomplex. In the early 1970s, this has encouraged the usage of LGTV as a potential live attenuated vaccine against tick-borne encephalitis (TBE) until cases of encephalitis were reported among vaccinees. Previously, we have shown in a mouse model that immunity induced against LGTV protects mice against lethal TBEV challenge infection. However, the immune correlates of this protection have not been studied. Methods: We used the strategy of adoptive transfer of either serum or T cells from LGTV infected mice into naïve recipient mice and challenged them with lethal dose of TBEV. Results: We show that mouse infection with LGTV induced both cross-reactive antibodies and T cells against TBEV. To identify correlates of protection, Monitoring the disease progression in these mice for 16 days post infection, showed that serum from LGTV infected mice efficiently protected from developing severe disease. On the other hand, adoptive transfer of T cells from LGTV infected mice failed to provide protection. Histopathological investigation of infected brains suggested a possible role of microglia and T cells in inflammatory processes within the brain. Discussion: Our data provide key information regarding the immune correlates of protection induced by LGTV infection of mice which may help design better vaccines against TBEV.


Subject(s)
Encephalitis Viruses, Tick-Borne , Encephalitis, Tick-Borne , Flavivirus Infections , Mice , Animals , Antibodies , Brain , Vaccines, Attenuated
6.
PLoS Pathog ; 17(9): e1009566, 2021 09.
Article in English | MEDLINE | ID: mdl-34555124

ABSTRACT

The hemagglutinin (HA) of A/H3N2 pandemic influenza viruses (IAVs) of 1968 differed from its inferred avian precursor by eight amino acid substitutions. To determine their phenotypic effects, we studied recombinant variants of A/Hong Kong/1/1968 virus containing either human-type or avian-type amino acids in the corresponding positions of HA. The precursor HA displayed receptor binding profile and high conformational stability typical for duck IAVs. Substitutions Q226L and G228S, in addition to their known effects on receptor specificity and replication, marginally decreased HA stability. Substitutions R62I, D63N, D81N and N193S reduced HA binding avidity. Substitutions R62I, D81N and A144G promoted viral replication in human airway epithelial cultures. Analysis of HA sequences revealed that substitutions D63N and D81N accompanied by the addition of N-glycans represent common markers of avian H3 HA adaptation to mammals. Our results advance understanding of genotypic and phenotypic changes in IAV HA required for avian-to-human adaptation and pandemic emergence.


Subject(s)
Hemagglutinin Glycoproteins, Influenza Virus/genetics , Influenza A Virus, H3N2 Subtype/genetics , Influenza in Birds/genetics , Influenza, Human/genetics , Viral Zoonoses/genetics , Animals , Ducks , Humans , Pandemics
7.
Vaccines (Basel) ; 8(3)2020 Aug 12.
Article in English | MEDLINE | ID: mdl-32806696

ABSTRACT

Tick-borne encephalitis virus (TBEV), a member of the family Flaviviridae, is one of the most important tick-transmitted viruses in Europe and Asia. Being a neurotropic virus, TBEV causes infection of the central nervous system, leading to various (permanent) neurological disorders summarized as tick-borne encephalitis (TBE). The incidence of TBE cases has increased due to the expansion of TBEV and its vectors. Since antiviral treatment is lacking, vaccination against TBEV is the most important protective measure. However, vaccination coverage is relatively low and immunogenicity of the currently available vaccines is limited, which may account for the vaccine failures that are observed. Understanding the TBEV-specific correlates of protection is of pivotal importance for developing novel and improved TBEV vaccines. For affording robust protection against infection and development of TBE, vaccines should induce both humoral and cellular immunity. In this review, the adaptive immunity induced upon TBEV infection and vaccination as well as novel approaches to produce improved TBEV vaccines are discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...