Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Obes Rev ; 20(3): 464-471, 2019 03.
Article in English | MEDLINE | ID: mdl-30537231

ABSTRACT

Obesity is a major problem in the modern world causing a higher risk for various cerebrovascular diseases causing a profound individual and societal burden. The neurobiological foundation bears potential to understand the complex interaction of individual differences in brain structure and function and ingestive behaviour. This systematic review was performed on the current evidence of structural abnormalities in grey matter volume (GMV) in patients with obesity based on studies published until December 2017, which were selected through search in PubMed, CENTER (Cochrane Library), PsycINFO, Web of Science, and Ovid MEDLINE. Ten studies were included; all of them included patients with obesity and provided a whole-brain analysis of grey matter (GM) distribution. Our findings confirmed the most consistent GM reductions in patients with obesity in the left, middle, and right inferior frontal gyrus (including the insula), the left middle temporal cortex, the left precentral gyrus, and the cerebellum. On the other hand, increased GMV in patients with obesity were found in the left cuneus, left middle frontal gyrus, left inferior occipital gyrus, and corpus callosum.


Subject(s)
Brain Mapping , Feeding Behavior/psychology , Gray Matter/pathology , Obesity/pathology , Analysis of Variance , Gray Matter/diagnostic imaging , Humans , Obesity/diagnostic imaging , Obesity/psychology
2.
Front Hum Neurosci ; 10: 352, 2016.
Article in English | MEDLINE | ID: mdl-27462211

ABSTRACT

Patients with panic and post-traumatic stress disorders seem to show increased psychophysiological reactions to conditions of unpredictable (U) threat, which has been discussed as a neurobiological marker of elevated levels of sustained fear in these disorders. Interestingly, a recent study found that the right inferior frontal gyrus (rIFG) is correlated to the successful regulation of sustained fear during U threat. Therefore this study aimed to examine the potential use of non-invasive brain stimulation to foster the rIFG by means of anodal transcranial direct current stimulation (tDCS) in order to reduce psychophysiological reactions to U threat. Twenty six participants were randomly assigned into an anodal and sham stimulation group in a double-blinded manner. Anodal and cathodal electrodes (7 * 5 cm) were positioned right frontal to target the rIFG. Stimulation intensity was I = 2 mA applied for 20 min during a task including U threat conditions (NPU-task). The effects of the NPU paradigm were measured by assessing the emotional startle modulation and the skin conductance response (SCR) at the outset of the different conditions. We found a significant interaction effect of condition × tDCS for the SCR (F (2,48) = 6.3, p < 0.01) without main effects of condition and tDCS. Post hoc tests revealed that the increase in SCR from neutral (N) to U condition was significantly reduced in verum compared to the sham tDCS group (t (24) = 3.84, p < 0.001). Our results emphasize the causal role of rIFG for emotional regulation and the potential use of tDCS to reduce apprehension during U threat conditions and therefore as a treatment for anxiety disorders.

3.
Stem Cell Res ; 12(3): 622-9, 2014 May.
Article in English | MEDLINE | ID: mdl-24631741

ABSTRACT

Induced pluripotent stem cells (iPSCs) are regarded as a central tool to understand human biology in health and disease. Similarly, iPSCs from non-human primates should be a central tool to understand human evolution, in particular for assessing the conservation of regulatory networks in iPSC models. Here, we have generated human, gorilla, bonobo and cynomolgus monkey iPSCs and assess their usefulness in such a framework. We show that these cells are well comparable in their differentiation potential and are generally similar to human, cynomolgus and rhesus monkey embryonic stem cells (ESCs). RNA sequencing reveals that expression differences among clones, individuals and stem cell type are all of very similar magnitude within a species. In contrast, expression differences between closely related primate species are three times larger and most genes show significant expression differences among the analyzed species. However, pseudogenes differ more than twice as much, suggesting that evolution of expression levels in primate stem cells is rapid, but constrained. These patterns in pluripotent stem cells are comparable to those found in other tissues except testis. Hence, primate iPSCs reveal insights into general primate gene expression evolution and should provide a rich source to identify conserved and species-specific gene expression patterns for cellular phenotypes.


Subject(s)
Biological Evolution , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Animals , Cell Differentiation , Cell Proliferation , Gene Expression Profiling , Humans , Primates
4.
Stem Cell Reports ; 2(1): 107-18, 2014 Jan 14.
Article in English | MEDLINE | ID: mdl-24678453

ABSTRACT

Genetic engineering of human induced pluripotent stem cells (hiPSCs) via customized designer nucleases has been shown to be significantly more efficient than conventional gene targeting, but still typically depends on the introduction of additional genetic selection elements. In our study, we demonstrate the efficient nonviral and selection-independent gene targeting in human pluripotent stem cells (hPSCs). Our high efficiencies of up to 1.6% of gene-targeted hiPSCs, accompanied by a low background of randomly inserted transgenes, eliminated the need for antibiotic or fluorescence-activated cell sorting selection, and allowed the use of short donor oligonucleotides for footprintless gene editing. Gene-targeted hiPSC clones were established simply by direct PCR screening. This optimized approach allows targeted transgene integration into safe harbor sites for more predictable and robust expression and enables the straightforward generation of disease-corrected, patient-derived iPSC lines for research purposes and, ultimately, for future clinical applications.


Subject(s)
Endonucleases/metabolism , Homologous Recombination , Pluripotent Stem Cells/metabolism , Cells, Cultured , DNA End-Joining Repair , Gene Knockout Techniques , Gene Targeting , Genetic Loci , Humans , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Oligodeoxyribonucleotides/metabolism , Pluripotent Stem Cells/cytology , Polymerase Chain Reaction
5.
Cell Reprogram ; 14(6): 471-84, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23194451

ABSTRACT

Induced pluripotent stem cells (iPSCs) represent a novel cell source for regenerative therapies. Many emerging iPSC-based therapeutic concepts will require preclinical evaluation in suitable large animal models. Among the large animal species frequently used in preclinical efficacy and safety studies, macaques show the highest similarities to humans at physiological, cellular, and molecular levels. We have generated iPSCs from cynomolgus monkeys (Macaca fascicularis) as a segue to regenerative therapy model development in this species. Because typical human immunodeficiency virus type 1 (HIV-1)-based lentiviral vectors show poor transduction of simian cells, a simian immunodeficiency virus (SIV)-based vector was chosen for efficient transduction of cynomolgus skin fibroblasts. A corresponding polycistronic vector with codon-optimized reprogramming factors was constructed for reprogramming. Growth characteristics as well as cell and colony morphology of the resulting cynomolgus iPSCs (cyiPSCs) were demonstrated to be almost identical to cynomolgus embryonic stem cells (cyESCs), and cyiPSCs expressed typical pluripotency markers including OCT4, SOX2, and NANOG. Furthermore, differentiation in vivo and in vitro into derivatives of all three germ layers, as well as generation of functional cardiomyocytes, could be demonstrated. Finally, a highly efficient technique for generation of transgenic cyiPSC clones with stable reporter expression in undifferentiated cells as well as differentiated transgenic cyiPSC progeny was developed to enable cell tracking in recipient animals. In conclusion, our data indicate that cyiPSCs represent a valuable cell source for establishment of macaque-based allogeneic and autologous preclinical cell transplantation models for various fields of regenerative medicine.


Subject(s)
Genetic Vectors , Induced Pluripotent Stem Cells , Simian Immunodeficiency Virus , Transcription Factors/biosynthesis , Transduction, Genetic , Animals , Cell Dedifferentiation/genetics , Cells, Cultured , HIV-1 , Humans , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Macaca fascicularis , Transcription Factors/genetics
6.
Hum Gene Ther ; 19(1): 39-52, 2008 Jan.
Article in English | MEDLINE | ID: mdl-18052721

ABSTRACT

Type II alveolar epithelial (AT2) cell-specific reporter expression has been highly useful in the study of embryology and alveolar regeneration in transgenic mice. Technologies enabling efficient gene transfer and cell type-restricted transgene expression in AT2 cells would allow for correction of AT2 cell-based diseases such as genetic surfactant deficiencies. Moreover, such approaches are urgently required to investigate differentiation of AT2 cells from adult and embryonic stem cells of other species than mouse. Using a human surfactant protein C (SP-C) promoter fragment, we have constructed lentiviral vectors enabling AT2-restricted transgene expression and identification of stem cell-derived AT2 cells. Lung epithelial cell lines M3E3/C3, H441, RLE-6TN, A549, MLE-12, and MLE-15 were characterized at the molecular and ultrastructural levels to identify cell lines useful to assess the cell type specificity of our vector constructs. After transduction, no green fluorescent protein (GFP) expression was observed in nontarget cells including bronchial H441 cells, pulmonary A549 cells, fibroblasts, smooth muscle cells, and endothelial cells. In contrast, and in correlation with endogenous SP-C expression, lentiviral transduction resulted in stable GFP expression in MLE-12 and MLE-15 AT2 cells. In conclusion, we have constructed a lentiviral vector mediating SP-C promoter-dependent GFP expression. Transgene expression strictly corresponds with an AT2 phenotype of the transduced cells. In particular, the generated vector should facilitate local alveolar gene therapy and investigation of alveolar regeneration and stem cell differentiation.


Subject(s)
Genetic Vectors , Green Fluorescent Proteins/metabolism , Lentivirus/genetics , Pulmonary Alveoli/cytology , Pulmonary Alveoli/metabolism , Pulmonary Surfactant-Associated Protein C/genetics , Animals , Cells, Cultured , Epithelial Cells/metabolism , Green Fluorescent Proteins/genetics , Humans , Mice , Phenotype , Promoter Regions, Genetic , Rats , Transduction, Genetic , Transgenes
SELECTION OF CITATIONS
SEARCH DETAIL
...