Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Glia ; 72(8): 1451-1468, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38629411

ABSTRACT

The disruption of astrocytic catabolic processes contributes to the impairment of amyloid-ß (Aß) clearance, neuroinflammatory signaling, and the loss of synaptic contacts in late-onset Alzheimer's disease (AD). While it is known that the posttranslational modifications of Aß have significant implications on biophysical properties of the peptides, their consequences for clearance impairment are not well understood. It was previously shown that N-terminally pyroglutamylated Aß3(pE)-42, a significant constituent of amyloid plaques, is efficiently taken up by astrocytes, leading to the release of pro-inflammatory cytokine tumor necrosis factor α and synapse loss. Here we report that Aß3(pE)-42, but not Aß1-42, gradually accumulates within the astrocytic endolysosomal system, disrupting this catabolic pathway and inducing the formation of heteromorphous vacuoles. This accumulation alters lysosomal kinetics, lysosome-dependent calcium signaling, and upregulates the lysosomal stress response. These changes correlate with the upregulation of glial fibrillary acidic protein (GFAP) and increased activity of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). Treatment with a lysosomal protease inhibitor, E-64, rescues GFAP upregulation, NF-κB activation, and synapse loss, indicating that abnormal lysosomal protease activity is upstream of pro-inflammatory signaling and related synapse loss. Collectively, our data suggest that Aß3(pE)-42-induced disruption of the astrocytic endolysosomal system leads to cytoplasmic leakage of lysosomal proteases, promoting pro-inflammatory signaling and synapse loss, hallmarks of AD-pathology.


Subject(s)
Amyloid beta-Peptides , Astrocytes , Lysosomes , Astrocytes/metabolism , Amyloid beta-Peptides/metabolism , Animals , Lysosomes/metabolism , Signal Transduction/physiology , Protein Processing, Post-Translational/physiology , Endosomes/metabolism , Glial Fibrillary Acidic Protein/metabolism , Peptide Fragments/metabolism , Mice , Cells, Cultured , Humans
2.
Front Immunol ; 14: 1273837, 2023.
Article in English | MEDLINE | ID: mdl-38077336

ABSTRACT

Introduction: The cyclic nucleotide cyclic adenosine monophosphate (cAMP) is a ubiquitous second messenger, which is known to play an important anti-inflammatory role. Astrocytes in the central nervous system (CNS) can modulate inflammation but little is known about the significance of cAMP in their function. Methods: We investigated cAMP dynamics in mouse olfactory bulb astrocytes in brain slices prepared from healthy and experimental autoimmune encephalomyelitis (EAE) mice. Results: The purinergic receptor ligands adenosine and adenosine triphosphate (ATP) both induced transient increases in cAMP in astrocytes expressing the genetically encoded cAMP sensor Flamindo2. The A2A receptor antagonist ZM241385 inhibited the responses. Similar transient increases in astrocytic cAMP occurred when olfactory receptor neurons were stimulated electrically, resulting in ATP release from the stimulated axons that increased cAMP, again via A2A receptors. Notably, A2A-mediated responses to ATP and adenosine were not different in EAE mice as compared to healthy mice. Discussion: Our results indicate that ATP, synaptically released by afferent axons in the olfactory bulb, is degraded to adenosine that acts on A2A receptors in astrocytes, thereby increasing the cytosolic cAMP concentration. However, this pathway is not altered in the olfactory bulb of EAE mice.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Mice , Animals , Astrocytes/metabolism , Olfactory Bulb/metabolism , Cyclic AMP/metabolism , Adenosine/metabolism , Adenosine Triphosphate/metabolism , Receptors, Purinergic P1/metabolism
3.
Front Cell Neurosci ; 15: 690147, 2021.
Article in English | MEDLINE | ID: mdl-34177468

ABSTRACT

Ca2+ imaging is the most frequently used technique to study glial cell physiology. While chemical Ca2+ indicators served to visualize and measure changes in glial cell cytosolic Ca2+ concentration for several decades, genetically encoded Ca2+ indicators (GECIs) have become state of the art in recent years. Great improvements have been made since the development of the first GECI and a large number of GECIs with different physical properties exist, rendering it difficult to select the optimal Ca2+ indicator. This review discusses some of the most frequently used GECIs and their suitability for glial cell research.

4.
Glia ; 68(3): 631-645, 2020 03.
Article in English | MEDLINE | ID: mdl-31696993

ABSTRACT

Astrocytes constitute the main glial component of the mammalian blood brain barrier (BBB). However, in the olfactory bulb (OB), the olfactory nerve layer (ONL) is almost devoid of astrocytes, raising the question which glial cells are part of the BBB. We used mice expressing EGFP in astrocytes and tdTomato in olfactory ensheathing cells (OECs), a specialized type of glial cells in the ONL, to unequivocally identify both glial cell types and investigate their contribution to the BBB in the olfactory bulb. OECs were located exclusively in the ONL, while somata of astrocytes were located in deeper layers and extended processes in the inner sublamina of the ONL. These processes surrounded blood vessels and contained aquaporin-4, an astrocytic protein enriched at the BBB. In the outer sublamina of the ONL, in contrast, blood vessels were surrounded by aquaporin-4-negative processes of OECs. Transcardial perfusion of blood vessels with lanthanum and subsequent visualization by electron microscopy showed that blood vessels enwrapped by OECs possessed intact tight junctions. In acute olfactory bulb preparations, injection of fluorescent glucose 6-NBDG into blood vessels resulted in labeling of OECs, indicating glucose transport from the perivascular space into OECs. In addition, Ca2+ transients in OECs in the outer sublamina evoked vasoconstriction, whereas Ca2+ signaling in OECs of the inner sublamina had no effect on adjacent blood vessels. Our results demonstrate that the BBB in the inner sublamina of the ONL contains astrocytes, while in the outer ONL OECs are part of the BBB.


Subject(s)
Blood-Brain Barrier/metabolism , Blood-Brain Barrier/pathology , Olfactory Bulb/metabolism , Olfactory Nerve/pathology , Animals , Astrocytes/metabolism , Mice , Neuroglia/metabolism , Neurons/metabolism , Olfactory Bulb/pathology , Olfactory Nerve/metabolism
5.
Front Cell Neurosci ; 13: 451, 2019.
Article in English | MEDLINE | ID: mdl-31636544

ABSTRACT

Ca2+ signaling in glial cells is primarily triggered by metabotropic pathways and the subsequent Ca2+ release from internal Ca2+ stores. However, there is upcoming evidence that various ion channels might also initiate Ca2+ rises in glial cells by Ca2+ influx. We investigated AMPA receptor-mediated inward currents and Ca2+ transients in olfactory ensheathing cells (OECs), a specialized glial cell population in the olfactory bulb (OB), using whole-cell voltage-clamp recordings and confocal Ca2+ imaging. By immunohistochemistry we showed immunoreactivity to the AMPA receptor subunits GluA1, GluA2 and GluA4 in OECs, suggesting the presence of AMPA receptors in OECs. Kainate-induced inward currents were mediated exclusively by AMPA receptors, as they were sensitive to the specific AMPA receptor antagonist, GYKI53655. Moreover, kainate-induced inward currents were reduced by the selective Ca2+-permeable AMPA receptor inhibitor, NASPM, suggesting the presence of functional Ca2+-permeable AMPA receptors in OECs. Additionally, kainate application evoked Ca2+ transients in OECs which were abolished in the absence of extracellular Ca2+, indicating that Ca2+ influx via Ca2+-permeable AMPA receptors contribute to kainate-induced Ca2+ transients. However, kainate-induced Ca2+ transients were partly reduced upon Ca2+ store depletion, leading to the conclusion that Ca2+ influx via AMPA receptor channels is essential to trigger Ca2+ transients in OECs, whereas Ca2+ release from internal stores contributes in part to the kainate-evoked Ca2+ response. Endogenous glutamate release by OSN axons initiated Ca2+ transients in OECs, equally mediated by metabotropic receptors (glutamatergic and purinergic) and AMPA receptors, suggesting a prominent role for AMPA receptor mediated Ca2+ signaling in axon-OEC communication.

6.
Glia ; 67(7): 1385-1400, 2019 07.
Article in English | MEDLINE | ID: mdl-30883940

ABSTRACT

Astrocytes are arranged in highly organized gap junction-coupled networks, communicating via the propagation of Ca2+ waves. Astrocytes are gap junction-coupled not only to neighboring astrocytes, but also to oligodendrocytes, forming so-called panglial syncytia. It is not known, however, whether glial cells in panglial syncytia transmit information using Ca2+ signaling. We used confocal Ca2+ imaging to study intercellular communication between astrocytes and olfactory ensheathing glial cells (OECs) in in-toto preparations of the mouse olfactory bulb. Our results demonstrate that Ca2+ transients in juxtaglomerular astrocytes, evoked by local photolysis of "caged" ATP and "caged" tACPD, led to subsequent Ca2+ responses in OECs. This transmission of Ca2+ responses from astrocytes to OECs persisted in the presence of neuronal inhibition, but was absent when gap junctional coupling was suppressed with carbenoxolone. When Ca2+ transients were directly evoked in OECs by puff application of DHPG, they resulted in delayed Ca2+ responses in juxtaglomerular astrocytes, indicating that panglial transmission of Ca2+ signals occurred in a bidirectional manner. In addition, panglial transmission of Ca2+ signals from astrocytes to OECs resulted in vasoconstriction of OEC-associated blood vessels in the olfactory nerve layer. Our results demonstrate functional transmission of Ca2+ signals between different classes of glial cells within gap junction-coupled panglial networks and the resulting regulation of blood vessel diameter in the olfactory bulb.


Subject(s)
Astrocytes/physiology , Calcium Signaling/physiology , Gap Junctions/physiology , Neuroglia/physiology , Neurovascular Coupling/physiology , Olfactory Mucosa/physiology , Action Potentials/physiology , Animals , Animals, Newborn , Cell Communication/physiology , Mice , Mice, Transgenic , Olfactory Bulb/cytology , Olfactory Bulb/physiology , Organ Culture Techniques
SELECTION OF CITATIONS
SEARCH DETAIL
...