Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Physiol (Oxf) ; 240(6): e14143, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38577966

ABSTRACT

AIMS: Metabolic reprogramming in cancer cells has been linked to mitochondrial dysfunction. The mitochondrial 2-oxoglutarate/malate carrier (OGC) has been suggested as a potential target for preventing cancer progression. Although OGC is involved in the malate/aspartate shuttle, its exact role in cancer metabolism remains unclear. We aimed to investigate whether OGC may contribute to the alteration of mitochondrial inner membrane potential by transporting protons. METHODS: The expression of OGC in mouse tissues and cancer cells was investigated by PCR and Western blot analysis. The proton transport function of recombinant murine OGC was evaluated by measuring the membrane conductance (Gm) of planar lipid bilayers. OGC-mediated substrate transport was measured in proteoliposomes using 14C-malate. RESULTS: OGC increases proton Gm only in the presence of natural (long-chain fatty acids, FA) or chemical (2,4-dinitrophenol) protonophores. The increase in OGC activity directly correlates with the increase in the number of unsaturated bonds of the FA. OGC substrates and inhibitors compete with FA for the same protein binding site. Arginine 90 was identified as a critical amino acid for the binding of FA, ATP, 2-oxoglutarate, and malate, which is a first step towards understanding the OGC-mediated proton transport mechanism. CONCLUSION: OGC extends the family of mitochondrial transporters with dual function: (i) metabolite transport and (ii) proton transport facilitated in the presence of protonophores. Elucidating the contribution of OGC to uncoupling may be essential for the design of targeted drugs for the treatment of cancer and other metabolic diseases.


Subject(s)
2,4-Dinitrophenol , Fatty Acids , Animals , 2,4-Dinitrophenol/pharmacology , Mice , Fatty Acids/metabolism , Humans , Malates/metabolism , Mitochondria/metabolism , Ion Transport/drug effects , Membrane Potential, Mitochondrial/drug effects , Protons , Ketoglutaric Acids/metabolism , Organic Anion Transporters/metabolism , Organic Anion Transporters/genetics , Membrane Transport Proteins
2.
Mol Metab ; 72: 101711, 2023 06.
Article in English | MEDLINE | ID: mdl-36958422

ABSTRACT

PURPOSE: Heart diseases are the leading cause of death worldwide. Metabolic interventions via ketogenic diets (KDs) have been used for decades to treat epilepsy, and more recently, also diabetes and obesity, as common comorbidities of heart diseases. However, recent reports linked KDs, based on long-chain triglycerides (LCTs), to cardiac fibrosis and a reduction of heart function in rodents. As intervention using medium-chain triglycerides (MCTs) was recently shown to be beneficial in murine cardiac reperfusion injury, the question arises as to what extent the fatty acid (FA)-composition in a KD alters molecular markers of FA-oxidation (FAO) and modulates cardiac fibrotic outcome. METHODS: The effects of LCT-KD as well as an LCT/MCT mix (8:1 ketogenic ratio) on cardiac tissue integrity and the plasma metabolome were assessed in adult male C57/BL6NRJ mice after eight weeks on the respective diet. RESULTS: Both KDs resulted in increased amount of collagen fibers and cardiac tissue was immunologically indistinguishable between groups. MCT supplementation resulted in i) profound changes in plasma metabolome, ii) reduced hydroxymethylglutaryl-CoA synthase upregulation, and mitofusin 2 downregulation, iii) abrogation of LCT-induced mitochondrial enlargement, and iv) enhanced FAO profile. Contrary to literature, mitochondrial biogenesis was unaffected by KDs. We propose that the observed tissue remodeling is caused by the accumulation of 4-hydroxy-2-nonenal protein adducts, despite an inconspicuous nuclear factor (erythroid-derived 2)-like 2 pathway. CONCLUSION: We conclude that regardless of the generally favorable effects of MCTs, they cannot inhibit 4-hydroxy-2-nonenal adduct formation and fibrotic tissue formation in this setting. Furthermore, we support the burgeoning concern about the effect of KDs on the cardiac safety profile.


Subject(s)
Diet, Ketogenic , Heart Diseases , Male , Mice , Animals , Diet, Ketogenic/adverse effects , Diet, Ketogenic/methods , Triglycerides/metabolism , Fatty Acids , Fibrosis
3.
Nucl Med Biol ; 52: 7-15, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28575795

ABSTRACT

INTRODUCTION: [11C]Erlotinib PET has shown promise to distinguish non-small cell lung cancer (NSCLC) tumors harboring the activating epidermal growth factor receptor (EGFR) mutation delE746-A750 from tumors with wild-type EGFR. To assess the suitability of [11C]erlotinib PET to detect the emergence of acquired erlotinib resistance in initially erlotinib-responsive tumors, we performed in vitro binding and PET experiments in mice bearing tumor xenografts using a range of different cancer cells, which were erlotinib-sensitive or exhibited clinically relevant resistance mechanisms to erlotinib. METHODS: The following cell lines were used for in vitro binding and PET experiments: the epidermoid carcinoma cell line A-431 (erlotinib-sensitive, wild-type EGFR) and the three NSCLC cell lines HCC827 (erlotinib-sensitive, delE746-A750), HCC827EPR (erlotinib-resistant, delE746-A750 and T790M) and HCC827ERLO (erlotinib-resistant, delE746-A750 and MET amplification). BALB/c nude mice with subcutaneous tumor xenografts underwent two consecutive [11C]erlotinib PET scans, a baseline scan and a second scan in which unlabeled erlotinib (10mg/kg) was co-injected. Logan graphical analysis was used to estimate total distribution volume (VT) of [11C]erlotinib in tumors. RESULTS: In vitro experiments revealed significantly higher uptake of [11C]erlotinib (5.2-fold) in the three NSCLC cell lines as compared to A-431 cells. In all four cell lines co-incubation with unlabeled erlotinib (1µM) led to significant reductions in [11C]erlotinib uptake (-19% to -66%). In both PET scans and for all four studied cell lines there were no significant differences in tumoral [11C]erlotinib VT values. For all three NSCLC cell lines, but not for the A-431 cell line, tumoral VT was significantly reduced following co-injection of unlabeled erlotinib (-20% to -35%). CONCLUSIONS: We found no significant differences in the in vitro and in vivo binding of [11C]erlotinib between erlotinib-sensitive and erlotinib-resistant NSCLC cells. Our findings suggest that [11C]erlotinib PET will not be suitable to distinguish erlotinib-sensitive NSCLC tumors from tumors with acquired resistance to erlotinib.


Subject(s)
Carcinoma, Non-Small-Cell Lung/diagnostic imaging , Cell Transformation, Neoplastic , Drug Resistance, Neoplasm , Erlotinib Hydrochloride , Lung Neoplasms/diagnostic imaging , Positron-Emission Tomography , Animals , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Cell Line, Tumor , ErbB Receptors/metabolism , Erlotinib Hydrochloride/metabolism , Female , Gene Expression Regulation, Neoplastic/drug effects , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...