Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
Chaos ; 34(4)2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38579146

ABSTRACT

In this paper, we analyze the dynamic effect of a reservoir computer (RC) on its performance. Modified Kuramoto's coupled oscillators are used to model the RC, and synchronization, Lyapunov spectrum (and dimension), Shannon entropy, and the upper bound of the Kolmogorov-Sinai entropy are employed to characterize the dynamics of the RC. The performance of the RC is analyzed by reproducing the distribution of random, Gaussian, and quantum jumps series (shelved states) since a replica of the time evolution of a completely random series is not possible to generate. We demonstrate that hyperchaotic motion, moderate Shannon entropy, and a higher degree of synchronization of Kuramoto's oscillators lead to the best performance of the RC. Therefore, an appropriate balance of irregularity and order in the oscillator's dynamics leads to better performances.

2.
Chaos ; 33(5)2023 May 01.
Article in English | MEDLINE | ID: mdl-37163993

ABSTRACT

Using the example of the city of São Paulo (Brazil), in this paper, we analyze the temporal relation between human mobility and meteorological variables with the number of infected individuals by the COVID-19 disease. For the temporal relation, we use the significant values of distance correlation t0(DC), which is a recently proposed quantity capable of detecting nonlinear correlations between time series. The analyzed period was from February 26, 2020 to June 28, 2020. Fewer movements in recreation and transit stations and the increase in the maximal temperature have strong correlations with the number of newly infected cases occurring 17 days after. Furthermore, more significant changes in grocery and pharmacy, parks, and recreation and sudden changes in the maximal pressure occurring 10 and 11 days before the disease begins are also correlated with it. Scanning the whole period of the data, not only the early stage of the disease, we observe that changes in human mobility also primarily affect the disease for 0-19 days after. In other words, our results demonstrate the crucial role of the municipal decree declaring an emergency in the city to influence the number of infected individuals.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , Brazil/epidemiology , Cities/epidemiology , Temperature , Time Factors
3.
Chaos ; 32(8): 083102, 2022 Aug.
Article in English | MEDLINE | ID: mdl-36049914

ABSTRACT

The nonlinear dynamics of a FitzHugh-Nagumo (FHN) neuron driven by an oscillating current and perturbed by a Gaussian noise signal with different intensities D is investigated. In the noiseless case, stable periodic structures [Arnold tongues (ATS), cuspidal and shrimp-shaped] are identified in the parameter space. The periods of the ATSs obey specific generating and recurrence rules and are organized according to linear Diophantine equations responsible for bifurcation cascades. While for small values of D, noise starts to destroy elongations ("antennas") of the cuspidals, for larger values of D, the periodic motion expands into chaotic regimes in the parameter space, stabilizing the chaotic motion, and a transient chaotic motion is observed at the periodic-chaotic borderline. Besides giving a detailed description of the neuronal dynamics, the intriguing novel effect observed for larger D values is the generation of a regular dynamics for the driven FHN neuron. This result has a fundamental importance if the complex local dynamics is considered to study the global behavior of the neural networks when parameters are simultaneously varied, and there is the necessity to deal the intrinsic stochastic signal merged into the time series obtained from real experiments. As the FHN model has crucial properties presented by usual neuron models, our results should be helpful in large-scale simulations using complex neuron networks and for applications.


Subject(s)
Models, Neurological , Neurons , Neural Networks, Computer , Neurons/physiology , Nonlinear Dynamics , Normal Distribution
4.
Phys Rev E ; 106(6): L062201, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36671131

ABSTRACT

This Letter demonstrates for chaotic maps [logistic, classical, and quantum standard maps (SMs)] that the exponential growth rate (Λ) of the out-of-time-ordered four-point correlator is equal to the classical Lyapunov exponent (λ) plus fluctuations (Δ^{(fluc)}) of the one-step finite-time Lyapunov exponents (FTLEs). Jensen's inequality provides the upper bound λ≤Λ for the considered systems. Equality is restored with Λ=λ+Δ^{(fluc)}, where Δ^{(fluc)} is quantified by k-higher-order cumulants of the (covariant) FTLEs. Exact expressions for Λ are derived and numerical results using k=20 furnish Δ^{(fluc)}∼ln(sqrt[2]) for all maps (large kicking intensities in the SMs).

5.
Sci Rep ; 11(1): 16178, 2021 Aug 10.
Article in English | MEDLINE | ID: mdl-34376759

ABSTRACT

Several dynamical systems in nature can be maintained out-of-equilibrium, either through mutual interaction of particles or by external fields. The particle's transport and the transient dynamics are landmarking of such systems. While single ratchet systems are genuine candidates to describe unbiased transport, we demonstrate here that coupled ratchets exhibit collective transient ratchet transport. Extensive numerical simulations for up to [Formula: see text] elastically interacting ratchets establish the generation of large transient ratchet currents (RCs). The lifetimes of the transient RCs increase with N and decrease with the coupling strength between the ratchets. We demonstrate one peculiar case having a coupling-induced transient RC through the asymmetric destruction of attractors. Results suggest that physical devices built with coupled ratchet systems should present large collective transient transport of particles, whose technological applications are undoubtedly appealing and feasible.

6.
Chaos ; 31(3): 033131, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33810752

ABSTRACT

In this work, an epidemiological model is constructed based on a target problem that consists of a chemical reaction on a lattice. We choose the generalized scale-free network to be the underlying lattice. Susceptible individuals become the targets of random walkers (infectious individuals) that are moving over the network. The time behavior of the susceptible individuals' survival is analyzed using parameters like the connectivity γ of the network and the minimum (Kmin) and maximum (Kmax) allowed degrees, which control the influence of social distancing and isolation or spatial restrictions. In all cases, we found power-law behaviors, whose exponents are strongly influenced by the parameter γ and to a lesser extent by Kmax and Kmin, in this order. The number of infected individuals diminished more efficiently by changing the parameter γ, which controls the topology of the scale-free networks. A similar efficiency is also reached by varying Kmax to extremely low values, i.e., the number of contacts of each individual is drastically diminished.


Subject(s)
Communicable Diseases , Communicable Diseases/epidemiology , Disease Susceptibility , Humans , Physical Distancing
7.
Chaos ; 30(10): 103109, 2020 Oct.
Article in English | MEDLINE | ID: mdl-33138443

ABSTRACT

We show that a characteristic alignment between Lyapunov vectors can be used to predict regime changes as well as regime duration in the classical Lorenz model of atmospheric convection. By combining Lyapunov vector alignment with maxima in the local expansion of bred vectors, we obtain an effective and competitive method to significantly decrease errors in the prediction of regime durations.

8.
Chaos ; 30(8): 083106, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32872835

ABSTRACT

In this paper, the alignment of covariant Lyapunov vectors is used to train multi-layer perceptron ensembles in order to predict the duration of regimes in chaotic time series of Rikitake's geomagnetic dynamo model. The machine learning procedure reveals the relevance of the alignment of distinct covariant Lyapunov vectors for the predictions. To train multi-layer perceptron, we use a classification procedure that associates the number of maxima (or minima) inside regimes of motion with the duration of the corresponding regime. Remarkably accurate predictions are obtained, even for the longest regimes whose duration times are around 17.5 Lyapunov times. We also found long duration regimes with a distinctive statistical behavior, namely, the longest regimes are more likely to occur, a quite unusual behavior. In fact, we observed a largest regime above which no regimes were observed.

9.
Chaos Solitons Fractals ; 140: 110164, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32834648

ABSTRACT

The cumulative number of confirmed infected individuals by the new coronavirus outbreak until April 30th, 2020, is presented for the countries: Belgium, Brazil, United Kingdom (UK), and the United States of America (USA). After an initial period with a low incidence of newly infected people, a power-law growth of the number of confirmed cases is observed. For each country, a distinct growth exponent is obtained. For Belgium, UK, and USA, countries with a large number of infected people, after the power-law growth, a distinct behavior is obtained when approaching saturation. Brazil is still in the power-law regime. Such updates of the data and projections corroborate recent results regarding the power-law growth of the virus and their strong Distance Correlation between some countries around the world. Furthermore, we show that act in time is one of the most relevant non-pharmacological weapons that the health organizations have in the battle against the COVID-19, infectious disease caused by the most recently discovered coronavirus. We study how changing the social distance and the number of daily tests to identify infected asymptomatic individuals can interfere in the number of confirmed cases of COVID-19 when applied in three distinct days, namely April 16th (early), April 30th (current), and May 14th (late). Results show that containment actions are necessary to flatten the curves and should be applied as soon as possible.

10.
Chaos ; 30(5): 053101, 2020 May.
Article in English | MEDLINE | ID: mdl-32491905

ABSTRACT

In this paper, we use machine learning strategies aiming to predict chaotic time series obtained from the Lorenz system. Such strategies prove to be successful in predicting the evolution of dynamical variables over a short period of time. Transitions between the regimes and their duration can be predicted with great accuracy by means of counting and classification strategies, for which we train multi-layer perceptron ensembles. Even for the longest regimes the occurrences and duration can be predicted. We also show the use of an echo state network to generate data of the time series with an accuracy of up to a few hundreds time steps. The ability of the classification technique to predict the regime duration of more than 11 oscillations corresponds to around 10 Lyapunov times.

11.
Chaos ; 30(4): 041102, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32357675

ABSTRACT

In this work, we analyze the growth of the cumulative number of confirmed infected cases by a novel coronavirus (COVID-19) until March 27, 2020, from countries of Asia, Europe, North America, and South America. Our results show that (i) power-law growth is observed in all countries; (ii) by using the distance correlation, the power-law curves between countries are statistically highly correlated, suggesting the universality of such curves around the world; and (iii) soft quarantine strategies are inefficient to flatten the growth curves. Furthermore, we present a model and strategies that allow the government to reach the flattening of the power-law curves. We found that besides the social distancing of individuals, of well known relevance, the strategy of identifying and isolating infected individuals in a large daily rate can help to flatten the power-laws. These are the essential strategies followed in the Republic of Korea. The high correlation between the power-law curves of different countries strongly indicates that the government containment measures can be applied with success around the whole world. These measures are scathing and to be applied as soon as possible.


Subject(s)
Betacoronavirus , Coronavirus Infections/transmission , Models, Statistical , Pneumonia, Viral/transmission , Quarantine/methods , Asia/epidemiology , Betacoronavirus/growth & development , COVID-19 , Coronavirus Infections/epidemiology , Coronavirus Infections/prevention & control , Europe/epidemiology , Geography, Medical , Human Activities , Humans , North America/epidemiology , Pandemics/prevention & control , Pneumonia, Viral/epidemiology , Pneumonia, Viral/prevention & control , Prevalence , SARS-CoV-2 , South America/epidemiology
12.
Chaos ; 29(11): 111101, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31779347

ABSTRACT

In this work, we show that optimal ratchet currents of two interacting particles are obtained when stable periodic motion is present. By increasing the coupling strength between identical ratchet maps, it is possible to find, for some parametric combinations, current reversals, hyperchaos, multistability, and duplication of the periodic motion in the parameter space. Besides that, by setting a fixed value for the current of one ratchet, it is possible to induce a positive/negative/null current for the whole system in certain domains of the parameter space.

13.
Phys Rev E ; 99(5-1): 052208, 2019 May.
Article in English | MEDLINE | ID: mdl-31212566

ABSTRACT

This work uses the statistical properties of finite-time Lyapunov exponents (FTLEs) to investigate the intermittent stickiness synchronization (ISS) observed in the mixed phase space of high-dimensional Hamiltonian systems. Full stickiness synchronization (SS) occurs when all FTLEs from a chaotic trajectory tend to zero for arbitrarily long time windows. This behavior is a consequence of the sticky motion close to regular structures which live in the high-dimensional phase space and affects all unstable directions proportionally by the same amount, generating a kind of collective motion. Partial SS occurs when at least one FTLE approaches zero. Thus, distinct degrees of partial SS may occur, depending on the values of nonlinearity and coupling parameters, on the dimension of the phase space, and on the number of positive FTLEs. Through filtering procedures used to precisely characterize the sticky motion, we are able to compute the algebraic decay exponents of the ISS and to obtain remarkable evidence about the existence of a universal behavior related to the decay of time correlations encoded in such exponents. In addition we show that even though the probability of finding full SS is small compared to partial SSs, the full SS may appear for very long times due to the slow algebraic decay of time correlations in mixed phase space. In this sense, observations of very late intermittence between chaotic motion and full SS become rare events.

14.
Phys Chem Chem Phys ; 20(27): 18539-18546, 2018 Jul 11.
Article in English | MEDLINE | ID: mdl-29951686

ABSTRACT

For three complex chemical reactions displaying intricate dynamics, we assess the effectiveness of a recently proposed quantitative method to forecast bursting and large spikes, i.e. extreme events. Specifically, we consider predicting extreme events in (i) a copper dissolution model where Bassett and Hudson experimentally observed homoclinic (Shilnikov) chaos, (ii) a model derived from the mass action law of chemical kinetics, and (iii) an autocatalator model. For these systems, we describe how the alignment of Lyapunov vectors can be used to predict the imminence of large-amplitude events and the onset of complex dynamics in chaotic time-series of observables.

15.
Phys Rev E ; 97(2-1): 022219, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29548209

ABSTRACT

In this work, noise is used to analyze the penetration of regular islands in conservative dynamical systems. For this purpose we use the standard map choosing nonlinearity parameters for which a mixed phase space is present. The random variable which simulates noise assumes three distributions, namely equally distributed, normal or Gaussian, and power law (obtained from the same standard map but for other parameters). To investigate the penetration process and explore distinct dynamical behaviors which may occur, we use recurrence time statistics (RTS), Lyapunov exponents and the occupation rate of the phase space. Our main findings are as follows: (i) the standard deviations of the distributions are the most relevant quantity to induce the penetration; (ii) the penetration of islands induce power-law decays in the RTS as a consequence of enhanced trapping; (iii) for the power-law correlated noise an algebraic decay of the RTS is observed, even though sticky motion is absent; and (iv) although strong noise intensities induce an ergodic-like behavior with exponential decays of RTS, the largest Lyapunov exponent is reminiscent of the regular islands.

16.
Chaos ; 27(10): 103101, 2017 Oct.
Article in English | MEDLINE | ID: mdl-29092453

ABSTRACT

The intermediate dynamics of composed one-dimensional maps is used to multiply attractors in phase space and create multiple independent bifurcation diagrams which can split apart. Results are shown for the composition of k-paradigmatic quadratic maps with distinct values of parameters generating k-independent bifurcation diagrams with corresponding k orbital points. For specific conditions, the basic mechanism for creating the shifted diagrams is the prohibition of period doubling bifurcations transformed in saddle-node bifurcations.

17.
Chaos ; 27(8): 081101, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28863504

ABSTRACT

In this work, we show how the composition of maps allows us to multiply, enlarge, and move stable domains in phase and parameter spaces of discrete nonlinear systems. Using Hénon maps with distinct parameters, we generate many identical copies of isoperiodic stable structures (ISSs) in the parameter space and attractors in phase space. The equivalence of the identical ISSs is checked by the largest Lyapunov exponent analysis, and the multiplied basins of attraction become riddled. Our proliferation procedure should be applicable to any two-dimensional nonlinear system.

18.
Sci Rep ; 6: 37102, 2016 11 15.
Article in English | MEDLINE | ID: mdl-27845435

ABSTRACT

We argue that the alignment of Lyapunov vectors provides a quantitative criterion to predict catastrophes, i.e. the imminence of large-amplitude events in chaotic time-series of observables generated by sets of ordinary differential equations. Explicit predictions are reported for a Rössler oscillator and for a semiconductor laser with optoelectronic feedback.

19.
Sci Rep ; 6: 18859, 2016 Jan 06.
Article in English | MEDLINE | ID: mdl-26732416

ABSTRACT

Chaos and regularity are routinely discriminated by using Lyapunov exponents distilled from the norm of orthogonalized Lyapunov vectors, propagated during the temporal evolution of the dynamics. Such exponents are mean-field-like averages that, for each degree of freedom, squeeze the whole temporal evolution complexity into just a single number. However, Lyapunov vectors also contain a step-by-step record of what exactly happens with the angles between stable and unstable manifolds during the whole evolution, a big-data information permanently erased by repeated orthogonalizations. Here, we study changes of angles between invariant subspaces as observed during temporal evolution of Hénon's system. Such angles are calculated numerically and analytically and used to characterize self-similarity of a chaotic attractor. In addition, we show how standard tools of dynamical systems may be angle-enhanced by dressing them with informations not difficult to extract. Such angle-enhanced tools reveal unexpected and practical facts that are described in detail. For instance, we present a video showing an angle-enhanced bifurcation diagram that exposes from several perspectives the complex geometrical features underlying the attractors. We believe such findings to be generic for extended classes of systems.

20.
Article in English | MEDLINE | ID: mdl-26382489

ABSTRACT

We analyze the recurrence-time statistics (RTS) in three-dimensional non-Hamiltonian volume-preserving systems (VPS): an extended standard map and a fluid model. The extended map is a standard map weakly coupled to an extra dimension which contains a deterministic regular, mixed (regular and chaotic), or chaotic motion. The extra dimension strongly enhances the trapping times inducing plateaus and distinct algebraic and exponential decays in the RTS plots. The combined analysis of the RTS with the classification of ordered and chaotic regimes and scaling properties allows us to describe the intricate way trajectories penetrate the previously impenetrable regular islands from the uncoupled case. Essentially the plateaus found in the RTS are related to trajectories that stay for long times inside trapping tubes, not allowing recurrences, and then penetrate diffusively the islands (from the uncoupled case) by a diffusive motion along such tubes in the extra dimension. All asymptotic exponential decays for the RTS are related to an ordered regime (quasiregular motion), and a mixing dynamics is conjectured for the model. These results are compared to the RTS of the standard map with dissipation or noise, showing the peculiarities obtained by using three-dimensional VPS. We also analyze the RTS for a fluid model and show remarkable similarities to the RTS in the extended standard map problem.

SELECTION OF CITATIONS
SEARCH DETAIL
...