Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
mSystems ; 8(4): e0028423, 2023 08 31.
Article in English | MEDLINE | ID: mdl-37493648

ABSTRACT

The intra-host composition of horizontally transmitted microbial symbionts can vary across host populations due to interactive effects of host genetics, environmental, and geographic factors. While adaptation to local habitat conditions can drive geographic subdivision of symbiont strains, it is unknown how differences in ecological characteristics among host-symbiont associations influence the genomic structure of symbiont populations. To address this question, we sequenced metagenomes of different populations of the deep-sea mussel Bathymodiolus septemdierum, which are common at Western Pacific deep-sea hydrothermal vents and show characteristic patterns of niche partitioning with sympatric gastropod symbioses. Bathymodiolus septemdierum lives in close symbiotic relationship with sulfur-oxidizing chemosynthetic bacteria but supplements its symbiotrophic diet through filter-feeding, enabling it to occupy ecological niches with little exposure to geochemical reductants. Our analyses indicate that symbiont populations associated with B. septemdierum show structuring by geographic location, but that the dominant symbiont strain is uncorrelated with vent site. These patterns are in contrast to co-occurring Alviniconcha and Ifremeria gastropod symbioses that exhibit greater symbiont nutritional dependence and occupy habitats with higher spatial variability in environmental conditions. Our results suggest that relative habitat homogeneity combined with sufficient symbiont dispersal and genomic mixing might promote persistence of similar symbiont strains across geographic locations, while mixotrophy might decrease selective pressures on the host to affiliate with locally adapted symbiont strains. Overall, these data contribute to our understanding of the potential mechanisms influencing symbiont population structure across a spectrum of marine microbial symbioses that occupy contrasting ecological niches. IMPORTANCE Beneficial relationships between animals and microbial organisms (symbionts) are ubiquitous in nature. In the ocean, microbial symbionts are typically acquired from the environment and their composition across geographic locations is often shaped by adaptation to local habitat conditions. However, it is currently unknown how generalizable these patterns are across symbiotic systems that have contrasting ecological characteristics. To address this question, we compared symbiont population structure between deep-sea hydrothermal vent mussels and co-occurring but ecologically distinct snail species. Our analyses show that mussel symbiont populations are less partitioned by geography and do not demonstrate evidence for environmental adaptation. We posit that the mussel's mixotrophic feeding mode may lower its need to affiliate with locally adapted symbiont strains, while microhabitat stability and symbiont genomic mixing likely favors persistence of symbiont strains across geographic locations. Altogether, these findings further our understanding of the mechanisms shaping symbiont population structure in marine environmentally transmitted symbioses.


Subject(s)
Gastropoda , Hydrothermal Vents , Mytilidae , Animals , Hydrothermal Vents/microbiology , Mytilidae/genetics , Bacteria/genetics , Ecosystem , Geography , Gastropoda/microbiology
2.
Microbiome ; 11(1): 106, 2023 05 16.
Article in English | MEDLINE | ID: mdl-37189129

ABSTRACT

BACKGROUND: Marine symbioses are predominantly established through horizontal acquisition of microbial symbionts from the environment. However, genetic and functional comparisons of free-living populations of symbionts to their host-associated counterparts are sparse. Here, we assembled the first genomes of the chemoautotrophic gammaproteobacterial symbionts affiliated with the deep-sea snail Alviniconcha hessleri from two separate hydrothermal vent fields of the Mariana Back-Arc Basin. We used phylogenomic and population genomic methods to assess sequence and gene content variation between free-living and host-associated symbionts. RESULTS: Our phylogenomic analyses show that the free-living and host-associated symbionts of A. hessleri from both vent fields are populations of monophyletic strains from a single species. Furthermore, genetic structure and gene content analyses indicate that these symbiont populations are differentiated by vent field rather than by lifestyle. CONCLUSION: Together, this work suggests that, despite the potential influence of host-mediated acquisition and release processes on horizontally transmitted symbionts, geographic isolation and/or adaptation to local habitat conditions are important determinants of symbiont population structure and intra-host composition. Video Abstract.


Subject(s)
Hydrothermal Vents , Animals , Hydrothermal Vents/microbiology , Snails/microbiology , Geography , Symbiosis/genetics , Phylogeny
3.
Evol Appl ; 16(1): 22-35, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36699127

ABSTRACT

Hydrothermal ecosystems face threats from planned deep-seabed mining activities, despite the fact that patterns of realized connectivity among vent-associated populations and communities are still poorly understood. Since populations of vent endemic species depend on larval dispersal to maintain connectivity and resilience to habitat changes, effective conservation strategies for hydrothermal ecosystems should include assessments of metapopulation dynamics. In this study, we combined population genetic methods with biophysical models to assess strength and direction of gene flow within four species of the genus Alviniconcha (A. boucheti, A. kojimai, A. strummeri and A. hessleri) that are ecologically dominant taxa at Western Pacific hydrothermal vents. In contrast to predictions from dispersal models, among-basin migration in A. boucheti occurred predominantly in an eastward direction, while populations within the North Fiji Basin were clearly structured despite the absence of oceanographic barriers. Dispersal models and genetic data were largely in agreement for the other Alviniconcha species, suggesting limited between-basin migration for A. kojimai, lack of genetic structure in A. strummeri within the Lau Basin and restricted gene flow between northern and southern A. hessleri populations in the Mariana back-arc as a result of oceanic current conditions. Our findings show that gene flow patterns in ecologically similar congeneric species can be remarkably different and surprisingly limited depending on environmental and evolutionary contexts. These results are relevant to regional conservation planning and to considerations of similar integrated analyses for any vent metapopulations under threat from seabed mining.

4.
G3 (Bethesda) ; 12(10)2022 09 30.
Article in English | MEDLINE | ID: mdl-35997584

ABSTRACT

Chemosynthetic animal-microbe symbioses sustain hydrothermal vent communities in the global deep sea. In the Indo-Pacific Ocean, hydrothermal ecosystems are often dominated by gastropod species of the genus Alviniconcha, which live in association with chemosynthetic Gammaproteobacteria or Campylobacteria. While the symbiont genomes of most extant Alviniconcha species have been sequenced, no genome information is currently available for the gammaproteobacterial endosymbiont of Alviniconcha adamantis-a comparatively shallow living species that is thought to be the ancestor to all other present Alviniconcha lineages. Here, we report the first genome sequence for the symbiont of A. adamantis from the Chamorro Seamount at the Mariana Arc. Our phylogenomic analyses show that the A. adamantis symbiont is most closely related to Chromatiaceae endosymbionts of the hydrothermal vent snails Alviniconcha strummeri and Chrysomallon squamiferum, but represents a distinct bacterial species or possibly genus. Overall, the functional capacity of the A. adamantis symbiont appeared to be similar to other chemosynthetic Gammaproteobacteria, though several flagella and chemotaxis genes were detected, which are absent in other gammaproteobacterial Alviniconcha symbionts. These differences might suggest potential contrasts in symbiont transmission dynamics, host recognition, or nutrient transfer. Furthermore, an abundance of genes for ammonia transport and urea usage could indicate adaptations to the oligotrophic waters of the Mariana region, possibly via recycling of host- and environment-derived nitrogenous waste products. This genome assembly adds to the growing genomic resources for chemosynthetic bacteria from hydrothermal vents and will be valuable for future comparative genomic analyses assessing gene content evolution in relation to environment and symbiotic lifestyles.


Subject(s)
Gammaproteobacteria , Hydrothermal Vents , Ammonia , Animals , Bacteria/genetics , Ecosystem , Gammaproteobacteria/genetics , Hydrothermal Vents/microbiology , Phylogeny , Snails , Symbiosis/genetics , Urea , Waste Products
5.
Proc Biol Sci ; 289(1970): 20212137, 2022 03 09.
Article in English | MEDLINE | ID: mdl-35259985

ABSTRACT

Vertical transmission of bacterial endosymbionts is accompanied by virtually irreversible gene loss that results in a progressive reduction in genome size. While the evolutionary processes of genome reduction have been well described in some terrestrial symbioses, they are less understood in marine systems where vertical transmission is rarely observed. The association between deep-sea vesicomyid clams and chemosynthetic Gammaproteobacteria is one example of maternally inherited symbioses in the ocean. Here, we assessed the contributions of drift, recombination and selection to genome evolution in two extant vesicomyid symbiont clades by comparing 15 representative symbiont genomes (1.017-1.586 Mb) to those of closely related bacteria and the hosts' mitochondria. Our analyses suggest that drift is a significant force driving genome evolution in vesicomyid symbionts, though selection and interspecific recombination appear to be critical for maintaining symbiont functional integrity and creating divergent patterns of gene conservation. Notably, the two symbiont clades possess putative functional differences in sulfide physiology, anaerobic respiration and dependency on environmental vitamin B12, which probably reflect adaptations to different ecological habitats available to each symbiont group. Overall, these results contribute to our understanding of the eco-evolutionary processes shaping reductive genome evolution in vertically transmitted symbioses.


Subject(s)
Bivalvia , Gammaproteobacteria , Animals , Bacteria/genetics , Bivalvia/genetics , Gammaproteobacteria/genetics , Genome Size , Genome, Bacterial , Phylogeny , Symbiosis/genetics
6.
Proc Natl Acad Sci U S A ; 119(14): e2115608119, 2022 04 05.
Article in English | MEDLINE | ID: mdl-35349333

ABSTRACT

SignificanceIn marine ecosystems, transmission of microbial symbionts between host generations occurs predominantly through the environment. Yet, it remains largely unknown how host genetics, symbiont competition, environmental conditions, and geography shape the composition of symbionts acquired by individual hosts. To address this question, we applied population genomic approaches to four species of deep-sea hydrothermal vent snails that live in association with chemosynthetic bacteria. Our analyses show that environment is more important to strain-level symbiont composition than host genetics and that symbiont strains show genetic variation indicative of adaptation to the distinct geochemical conditions at each vent site. This corroborates a long-standing hypothesis that hydrothermal vent invertebrates affiliate with locally adapted symbiont strains to cope with the variable conditions characterizing their habitats.


Subject(s)
Hydrothermal Vents , Bacteria/genetics , Ecosystem , Hydrothermal Vents/microbiology , Metagenomics , Symbiosis/genetics
7.
Environ Microbiol Rep ; 14(2): 299-307, 2022 04.
Article in English | MEDLINE | ID: mdl-35170217

ABSTRACT

Symbioses between invertebrate animals and chemosynthetic bacteria build the foundation of deep-sea hydrothermal ecosystems worldwide. Despite the importance of these symbioses for ecosystem functioning, the diversity of symbionts within and between host organisms and geographic regions is still poorly understood. In this study we used 16S rRNA amplicon sequencing to determine the diversity of gill endosymbionts in provannid snails of the genera Alviniconcha and Ifremeria, which are key species at deep-sea hydrothermal vents in the Indo-Pacific Ocean. Our analysis of 761 snail samples across the distributional range of these species confirms previous findings that symbiont lineages are strongly partitioned by host species and broad-scale geography. Less structuring was observed within geographic regions, probably due to insufficient strain resolution of the 16S rRNA gene. Symbiont richness in individual hosts appeared to be unrelated to host size, suggesting that provannid snails might acquire their symbionts only during a permissive time window in early developmental stages in contrast to other vent molluscs that obtain their symbionts throughout their lifetime. Despite the extent of our dataset, symbiont accumulation curves did not reach saturation, highlighting the need for increased sampling efforts to uncover the full diversity of symbionts within these and other hydrothermal vent species.


Subject(s)
Hydrothermal Vents , Animals , Ecosystem , Hydrothermal Vents/microbiology , Phylogeny , RNA, Ribosomal, 16S/genetics , Snails/microbiology , Symbiosis
8.
Appl Environ Microbiol ; 87(17): e0079421, 2021 08 11.
Article in English | MEDLINE | ID: mdl-34190607

ABSTRACT

Genome and proteome data predict the presence of both the reductive citric acid cycle (rCAC; also called the reductive tricarboxylic acid cycle) and the Calvin-Benson-Bassham cycle (CBB) in "Candidatus Endoriftia persephonae," the autotrophic sulfur-oxidizing bacterial endosymbiont from the giant hydrothermal vent tubeworm Riftia pachyptila. We tested whether these cycles were differentially induced by sulfide supply, since the synthesis of biosynthetic intermediates by the rCAC is less energetically expensive than that by the CBB. R. pachyptila was incubated under in situ conditions in high-pressure aquaria under low (28 to 40 µmol · h-1) or high (180 to 276 µmol · h-1) rates of sulfide supply. Symbiont-bearing trophosome samples excised from R. pachyptila maintained under the two conditions were capable of similar rates of CO2 fixation. Activities of the rCAC enzyme ATP-dependent citrate lyase (ACL) and the CBB enzyme 1,3-bisphosphate carboxylase/oxygenase (RubisCO) did not differ between the two conditions, although transcript abundances for ATP-dependent citrate lyase were 4- to 5-fold higher under low-sulfide conditions. δ13C values of internal dissolved inorganic carbon (DIC) pools were varied and did not correlate with sulfide supply rate. In samples taken from freshly collected R. pachyptila, δ13C values of lipids fell between those collected for organisms using either the rCAC or the CBB exclusively. These observations are consistent with cooccurring activities of the rCAC and the CBB in this symbiosis. IMPORTANCE Previous to this study, the activities of the rCAC and CBB in R. pachyptila had largely been inferred from "omics" studies of R. pachyptila without direct assessment of in situ conditions prior to collection. In this study, R. pachyptila was maintained and monitored in high-pressure aquaria prior to measuring its CO2 fixation parameters. Results suggest that ranges in sulfide concentrations similar to those experienced in situ do not exert a strong influence on the relative activities of the rCAC and the CBB. This observation highlights the importance of further study of this symbiosis and other organisms with multiple CO2-fixing pathways, which recent genomics and biochemical studies suggest are likely to be more prevalent than anticipated.


Subject(s)
Gammaproteobacteria/physiology , Polychaeta/microbiology , Symbiosis , Animals , Autotrophic Processes , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Citric Acid Cycle , Gammaproteobacteria/classification , Gammaproteobacteria/genetics , Gammaproteobacteria/isolation & purification , Hydrothermal Vents/microbiology , Hydrothermal Vents/parasitology , Photosynthesis , Polychaeta/physiology , Sulfides/metabolism , Sulfur/metabolism
9.
PLoS Genet ; 16(8): e1008935, 2020 08.
Article in English | MEDLINE | ID: mdl-32841233

ABSTRACT

Bacterial symbionts bring a wealth of functions to the associations they participate in, but by doing so, they endanger the genes and genomes underlying these abilities. When bacterial symbionts become obligately associated with their hosts, their genomes are thought to decay towards an organelle-like fate due to decreased homologous recombination and inefficient selection. However, numerous associations exist that counter these expectations, especially in marine environments, possibly due to ongoing horizontal gene flow. Despite extensive theoretical treatment, no empirical study thus far has connected these underlying population genetic processes with long-term evolutionary outcomes. By sampling marine chemosynthetic bacterial-bivalve endosymbioses that range from primarily vertical to strictly horizontal transmission, we tested this canonical theory. We found that transmission mode strongly predicts homologous recombination rates, and that exceedingly low recombination rates are associated with moderate genome degradation in the marine symbionts with nearly strict vertical transmission. Nonetheless, even the most degraded marine endosymbiont genomes are occasionally horizontally transmitted and are much larger than their terrestrial insect symbiont counterparts. Therefore, horizontal transmission and recombination enable efficient natural selection to maintain intermediate symbiont genome sizes and substantial functional genetic variation.


Subject(s)
Bacteria/pathogenicity , Bivalvia/microbiology , Gene Transfer, Horizontal , Genome, Bacterial , Recombination, Genetic , Symbiosis/genetics , Animals , Bacteria/genetics , Bivalvia/genetics , Evolution, Molecular , Genetic Variation
10.
Mol Biol Evol ; 37(12): 3469-3484, 2020 12 16.
Article in English | MEDLINE | ID: mdl-32658967

ABSTRACT

Despite significant advances in our understanding of speciation in the marine environment, the mechanisms underlying evolutionary diversification in deep-sea habitats remain poorly investigated. Here, we used multigene molecular clocks and population genetic inferences to examine processes that led to the emergence of the six extant lineages of Alviniconcha snails, a key taxon inhabiting deep-sea hydrothermal vents in the Indo-Pacific Ocean. We show that both allopatric divergence through historical vicariance and ecological isolation due to niche segregation contributed to speciation in this genus. The split between the two major Alviniconcha clades (separating A. boucheti and A. marisindica from A. kojimai, A. hessleri, and A. strummeri) probably resulted from tectonic processes leading to geographic separation, whereas the splits between co-occurring species might have been influenced by ecological factors, such as the availability of specific chemosynthetic symbionts. Phylogenetic origin of the sixth species, Alviniconcha adamantis, remains uncertain, although its sister position to other extant Alviniconcha lineages indicates a possible ancestral relationship. This study lays a foundation for future genomic studies aimed at deciphering the roles of local adaptation, reproductive biology, and host-symbiont compatibility in speciation of these vent-restricted snails.


Subject(s)
Genetic Speciation , Hydrothermal Vents , Snails/genetics , Animals , Fossils , Gammaproteobacteria , Gene Regulatory Networks , Phylogeny , Phylogeography , Snails/microbiology , Symbiosis , Sympatry
11.
ISME J ; 14(10): 2568-2579, 2020 10.
Article in English | MEDLINE | ID: mdl-32616905

ABSTRACT

Symbioses between invertebrate animals and chemosynthetic bacteria form the basis of hydrothermal vent ecosystems worldwide. In the Lau Basin, deep-sea vent snails of the genus Alviniconcha associate with either Gammaproteobacteria (A. kojimai, A. strummeri) or Campylobacteria (A. boucheti) that use sulfide and/or hydrogen as energy sources. While the A. boucheti host-symbiont combination (holobiont) dominates at vents with higher concentrations of sulfide and hydrogen, the A. kojimai and A. strummeri holobionts are more abundant at sites with lower concentrations of these reductants. We posit that adaptive differences in symbiont physiology and gene regulation might influence the observed niche partitioning between host taxa. To test this hypothesis, we used high-pressure respirometers to measure symbiont metabolic rates and examine changes in gene expression among holobionts exposed to in situ concentrations of hydrogen (H2: ~25 µM) or hydrogen sulfide (H2S: ~120 µM). The campylobacterial symbiont exhibited the lowest rate of H2S oxidation but the highest rate of H2 oxidation, with fewer transcriptional changes and less carbon fixation relative to the gammaproteobacterial symbionts under each experimental condition. These data reveal potential physiological adaptations among symbiont types, which may account for the observed net differences in metabolic activity and contribute to the observed niche segregation among holobionts.


Subject(s)
Gammaproteobacteria , Hydrothermal Vents , Animals , Ecosystem , Gammaproteobacteria/genetics , Phylogeny , Symbiosis
12.
Curr Biol ; 30(11): 2037-2050.e6, 2020 06 08.
Article in English | MEDLINE | ID: mdl-32330419

ABSTRACT

Oxygen plays a crucial role in energetic metabolism of most eukaryotes. Yet adaptations to low-oxygen concentrations leading to anaerobiosis have independently arisen in many eukaryotic lineages, resulting in a broad spectrum of reduced and modified mitochondrion-related organelles (MROs). In this study, we present the discovery of two new class-level lineages of free-living marine anaerobic ciliates, Muranotrichea, cl. nov. and Parablepharismea, cl. nov., that, together with the class Armophorea, form a major clade of obligate anaerobes (APM ciliates) within the Spirotrichea, Armophorea, and Litostomatea (SAL) group. To deepen our understanding of the evolution of anaerobiosis in ciliates, we predicted the mitochondrial metabolism of cultured representatives from all three classes in the APM clade by using transcriptomic and metagenomic data and performed phylogenomic analyses to assess their evolutionary relationships. The predicted mitochondrial metabolism of representatives from the APM ciliates reveals functional adaptations of metabolic pathways that were present in their last common ancestor and likely led to the successful colonization and diversification of the group in various anoxic environments. Furthermore, we discuss the possible relationship of Parablepharismea to the uncultured deep-sea class Cariacotrichea on the basis of single-gene analyses. Like most anaerobic ciliates, all studied species of the APM clade host symbionts, which we propose to be a significant accelerating factor in the transitions to an obligately anaerobic lifestyle. Our results provide an insight into the evolutionary mechanisms of early transitions to anaerobiosis and shed light on fine-scale adaptations in MROs over a relatively short evolutionary time frame.


Subject(s)
Anaerobiosis/genetics , Anaerobiosis/physiology , Biological Evolution , Ciliophora/genetics , Ciliophora/physiology , Genomics , Ciliophora/ultrastructure , Mitochondria/physiology
13.
Front Microbiol ; 10: 1818, 2019.
Article in English | MEDLINE | ID: mdl-31474946

ABSTRACT

Symbiosis has evolved between a diversity of invertebrate taxa and chemosynthetic bacterial lineages. At the broadest level, these symbioses share primary function: the bacterial symbionts use the energy harnessed from the oxidation of reduced chemicals to power the fixation of inorganic carbon and/or other nutrients, providing the bulk of host nutrition. However, it is unclear to what extent the ecological niche of the host species is influenced by differences in symbiont traits, particularly those involved in chemoautotrophic function and interaction with the geochemical environment. Hydrothermal vents in the Lau Basin (Tonga) are home to four morphologically and physiologically similar snail species from the sister genera Alviniconcha and Ifremeria. Here, we assembled nearly complete genomes from their symbionts to determine whether differences in chemoautotrophic capacity exist among these symbionts that could explain the observed distribution of these snail species into distinct geochemical habitats. Phylogenomic analyses confirmed that the symbionts have evolved from four distinct lineages in the classes γ-proteobacteria or Campylobacteria. The genomes differed with respect to genes related to motility, adhesion, secretion, and amino acid uptake or excretion, though were quite similar in chemoautotrophic function, with all four containing genes for carbon fixation, sulfur and hydrogen oxidation, and oxygen and nitrate respiration. This indicates that differences in the presence or absence of symbiont chemoautotrophic functions does not likely explain the observed geochemical habitat partitioning. Rather, differences in gene expression and regulation, biochemical differences among these chemoautotrophic pathways, and/or differences in host physiology could all influence the observed patterns of habitat partitioning.

14.
mSystems ; 4(3)2019 May 21.
Article in English | MEDLINE | ID: mdl-31117021

ABSTRACT

It is increasingly accepted that the microbial symbionts of eukaryotes can have profound effects on host ecology and evolution. However, the relative contribution that they make directly to ecosystem processes, like energy and nutrient flows, is less explicitly acknowledged and, in many cases, only poorly constrained. Here, I explore the idea that, in some habitats, host-associated microbes may have an outsized role in ecosystem processes relative to functionally equivalent free-living microbes due to key aspects of the physiology, ecology, and evolution of symbiotic interactions. My research quantifying symbiont metabolism has shown that microbial symbionts have the potential to make a substantial impact on carbon and sulfur cycling. It is my perspective that direct measurement of symbiont activity and comparison to free-living counterparts will expand our understanding of the significance of microbial symbioses and, more broadly, the role of microbial processes in ecosystems.

15.
Front Microbiol ; 7: 1074, 2016.
Article in English | MEDLINE | ID: mdl-27486438

ABSTRACT

Endosymbioses between animals and chemoautotrophic bacteria are ubiquitous at hydrothermal vents. These environments are distinguished by high physico-chemical variability, yet we know little about how these symbioses respond to environmental fluctuations. We therefore examined how the γ-proteobacterial symbionts of the vent snail Ifremeria nautilei respond to changes in sulfur geochemistry. Via shipboard high-pressure incubations, we subjected snails to 105 µM hydrogen sulfide (LS), 350 µM hydrogen sulfide (HS), 300 µM thiosulfate (TS) and seawater without any added inorganic electron donor (ND). While transcript levels of sulfur oxidation genes were largely consistent across treatments, HS and TS treatments stimulated genes for denitrification, nitrogen assimilation, and CO2 fixation, coincident with previously reported enhanced rates of inorganic carbon incorporation and sulfur oxidation in these treatments. Transcripts for genes mediating oxidative damage were enriched in the ND and LS treatments, potentially due to a reduction in O2 scavenging when electron donors were scarce. Oxidative TCA cycle gene transcripts were also more abundant in ND and LS treatments, suggesting that I. nautilei symbionts may be mixotrophic when inorganic electron donors are limiting. These data reveal the extent to which I. nautilei symbionts respond to changes in sulfur concentration and species, and, interpreted alongside coupled biochemical metabolic rates, identify gene targets whose expression patterns may be predictive of holobiont physiology in environmental samples.

16.
ISME J ; 8(10): 1962-73, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24722632

ABSTRACT

In addition to the cyanobacterial N2-fixers (diazotrophs), there is a high nifH gene diversity of non-cyanobacterial groups present in marine environments, yet quantitative information about these groups is scarce. N2 fixation potential (nifH gene expression), diversity and distributions of the uncultivated diazotroph phylotype γ-24774A11, a putative gammaproteobacterium, were investigated in the western South Pacific Ocean. γ-24774A11 gene copies correlated positively with diazotrophic cyanobacteria, temperature, dissolved organic carbon and ambient O2 saturation, and negatively with depth, chlorophyll a and nutrients, suggesting that carbon supply, access to light or inhibitory effects of DIN may control γ-24774A11 abundances. Maximum nifH gene-copy abundance was 2 × 10(4) l(-1), two orders of magnitude less than that for diazotrophic cyanobacteria, while the median γ-24774A11 abundance, 8 × 10(2) l(-1), was greater than that for the UCYN-A cyanobacteria, suggesting a more homogeneous distribution in surface waters. The abundance of nifH transcripts by γ-24774A11 was greater during the night than during the day, and the transcripts generally ranged from 0-7%, but were up to 26% of all nifH transcripts at each station. The ubiquitous presence and low variability of γ-24774A11 abundances across tropical and subtropical oceans, combined with the consistent nifH expression reported in this study, suggest that γ-24774A11 could be one of the most important heterotrophic (or photoheterotrophic) diazotrophs and may need to be considered in future N budget estimates and models.


Subject(s)
Gammaproteobacteria/genetics , Nitrogen Fixation/genetics , Oxidoreductases/genetics , Seawater/microbiology , Cyanobacteria/genetics , Gammaproteobacteria/metabolism , Gene Dosage , Gene Expression , Oxidoreductases/metabolism , Pacific Ocean , Phylogeny , Temperature , Water Microbiology
17.
Proc Natl Acad Sci U S A ; 109(47): E3241-50, 2012 Nov 20.
Article in English | MEDLINE | ID: mdl-23091033

ABSTRACT

Deep-sea hydrothermal vents are populated by dense communities of animals that form symbiotic associations with chemolithoautotrophic bacteria. To date, our understanding of which factors govern the distribution of host/symbiont associations (or holobionts) in nature is limited, although host physiology often is invoked. In general, the role that symbionts play in habitat utilization by vent holobionts has not been thoroughly addressed. Here we present evidence for symbiont-influenced, regional-scale niche partitioning among symbiotic gastropods (genus Alviniconcha) in the Lau Basin. We extensively surveyed Alviniconcha holobionts from four vent fields using quantitative molecular approaches, coupled to characterization of high-temperature and diffuse vent-fluid composition using gastight samplers and in situ electrochemical analyses, respectively. Phylogenetic analyses exposed cryptic host and symbiont diversity, revealing three distinct host types and three different symbiont phylotypes (one ε-proteobacteria and two γ-proteobacteria) that formed specific associations with one another. Strikingly, we observed that holobionts with ε-proteobacterial symbionts were dominant at the northern fields, whereas holobionts with γ-proteobacterial symbionts were dominant in the southern fields. This pattern of distribution corresponds to differences in the vent geochemistry that result from deep subsurface geological and geothermal processes. We posit that the symbionts, likely through differences in chemolithoautotrophic metabolism, influence niche utilization among these holobionts. The data presented here represent evidence linking symbiont type to habitat partitioning among the chemosynthetic symbioses at hydrothermal vents and illustrate the coupling between subsurface geothermal processes and niche availability.


Subject(s)
Ecosystem , Epsilonproteobacteria/genetics , Gammaproteobacteria/genetics , Gastropoda/genetics , Gastropoda/microbiology , Hydrothermal Vents/microbiology , Symbiosis/genetics , Animals , Bayes Theorem , Carbon Isotopes , Electrochemical Techniques , Electron Transport Complex IV/genetics , Geography , Haplotypes/genetics , Isotope Labeling , Mitochondria/genetics , Molecular Sequence Data , Pacific Ocean , Phylogeny , Protein Subunits/genetics , RNA, Ribosomal, 16S/genetics , Temperature
18.
Environ Microbiol ; 14(3): 580-93, 2012 Mar.
Article in English | MEDLINE | ID: mdl-21955724

ABSTRACT

Synechococcus is a cosmopolitan marine cyanobacterial genus, and is often the most abundant picocyanobacterial genus in coastal waters. Little is known about Synechococcus seasonal dynamics in coastal zones highly impacted by upwelling. This was investigated by collecting seasonal samples from an upwelling-impacted Monterey Bay (MB) monitoring station M0, in parallel with measurements of oceanographic conditions during 2006-2008. Synechococcus abundances were determined using quantitative PCR (qPCR) assays and flow cytometry (FCM). A new qPCR assay was designed to target dominant Synechococcus in MB using the rbcL gene, while previously designed assays targeted distinct phylotypes (called narB subgroups) with the narB gene. The rbcL qPCR assay successfully tracked abundant Synechococcus in MB, accounting for on average 89% (± 57%) of FCM-based counts. Annual spring upwelling caused decreases in Synechococcus and narB subgroup abundances. Differences in narB subgroup abundance maxima and abundance patterns support the view that subgroups differ in their ecologies, including subgroup D_C1, which seems to specifically thrive in coastal waters. Correlations between narB subgroup abundances and measured environmental variables were similar among the subgroups. Therefore, non-measured environmental factors (e.g. metals, mortality) likely had different influences on subgroups, which led to their distinct abundance patterns at M0.


Subject(s)
Bacterial Proteins/genetics , Bays/microbiology , Synechococcus/growth & development , Water Microbiology , Base Sequence , California , Genes, Bacterial , Molecular Sequence Data , Polymerase Chain Reaction , Seasons , Seawater/microbiology , Synechococcus/classification , Synechococcus/genetics
19.
Front Microbiol ; 2: 62, 2011.
Article in English | MEDLINE | ID: mdl-21833317

ABSTRACT

The thermodynamics for the first electron transfer step for sulfide and oxygen indicates that the reaction is unfavorable as unstable superoxide and bisulfide radical ions would need to be produced. However, a two-electron transfer is favorable as stable S(0) and peroxide would be formed, but the partially filled orbitals in oxygen that accept electrons prevent rapid kinetics. Abiotic sulfide oxidation kinetics improve when reduced iron and/or manganese are oxidized by oxygen to form oxidized metals which in turn oxidize sulfide. Biological sulfur oxidation relies on enzymes that have evolved to overcome these kinetic constraints to affect rapid sulfide oxidation. Here we review the available thermodynamic and kinetic data for H(2)S and HS• as well as O(2), reactive oxygen species, nitrate, nitrite, and NO(x) species. We also present new kinetic data for abiotic sulfide oxidation with oxygen in trace metal clean solutions that constrain abiotic rates of sulfide oxidation in metal free solution and agree with the kinetic and thermodynamic calculations. Moreover, we present experimental data that give insight on rates of chemolithotrophic and photolithotrophic sulfide oxidation in the environment. We demonstrate that both anaerobic photolithotrophic and aerobic chemolithotrophic sulfide oxidation rates are three or more orders of magnitude higher than abiotic rates suggesting that in most environments biotic sulfide oxidation rates will far exceed abiotic rates due to the thermodynamic and kinetic constraints discussed in the first section of the paper. Such data reshape our thinking about the biotic and abiotic contributions to sulfide oxidation in the environment.

20.
Science ; 327(5972): 1512-4, 2010 Mar 19.
Article in English | MEDLINE | ID: mdl-20185682

ABSTRACT

Nitrogen (N2)-fixing microorganisms (diazotrophs) are an important source of biologically available fixed N in terrestrial and aquatic ecosystems and control the productivity of oligotrophic ocean ecosystems. We found that two major groups of unicellular N2-fixing cyanobacteria (UCYN) have distinct spatial distributions that differ from those of Trichodesmium, the N2-fixing cyanobacterium previously considered to be the most important contributor to open-ocean N2 fixation. The distributions and activity of the two UCYN groups were separated as a function of depth, temperature, and water column density structure along an 8000-kilometer transect in the South Pacific Ocean. UCYN group A can be found at high abundances at substantially higher latitudes and deeper in subsurface ocean waters than Trichodesmium. These findings have implications for the geographic extent and magnitude of basin-scale oceanic N2 fixation rates.


Subject(s)
Cyanobacteria/isolation & purification , Cyanobacteria/metabolism , Ecosystem , Nitrogen Fixation , Seawater/microbiology , Biomass , Cyanobacteria/genetics , Cyanobacteria/growth & development , Genes, Bacterial , Geography , Light , Oxidoreductases/genetics , Pacific Ocean , Phytoplankton , Polymerase Chain Reaction , Seawater/chemistry , Species Specificity , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...