Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 320
Filter
1.
Article in English | MEDLINE | ID: mdl-38842141

ABSTRACT

AIM: The current study aims to investigate the association of serum brain-derived neurotrophic factor (BDNF) levels with symptoms of depression in adults with and without prevalent cardiovascular disease (CVD), an often burdensome comorbidity. METHODS: This cross-sectional study included participants from FHS (Framingham Heart Study) who had available serum BDNF levels. Depressive symptoms were assessed using the Center for Epidemiological Studies-Depression Scale (CES-D) with a score ≥16 indicating mild to moderate and ≥21 severe depression. Participants taking antidepressant medications were excluded from the study. RESULTS: Altogether 3716 FHS participants were included in the final analysis (mean age, 64.3 ± 11.5 years; 55% women). After adjusting for potential confounders, greater BDNF levels were associated with reduced severe depression risk (odds ratio [OR], 0.78 [95% CI, 0.64-0.96]; P = 0.016). Among participants with CVD, greater BDNF levels were related to lower risk of depressive symptoms (CES-D ≥ 16 OR, 0.63 [95% CI, 0.45-0.89], P = 0.008; CES-D ≥ 21 OR, 0.49 [95% CI, 0.31-0.76], P = 0.002). The inverse relationship between BDNF and depressive symptom risk was present in women with CVD (CES-D ≥ 16 OR, 0.63 [95% CI, 0.40-0.99], P = 0.047; CES-D ≥ 21 OR, 0.38 [95% CI, 0.21-0.70], P = 0.002) but not in men. CONCLUSION: Lower serum BDNF levels are associated with a higher risk of depressive symptoms in CVD, particularly among women. These findings implicate BDNF in the complex biological mechanisms that underlie prior associations observed between CVD and depression. To reduce the burden of depression in the large proportion of midlife and older adults with CVD, a better understanding of how BDNF may modify these pathways is merited.

2.
J Alzheimers Dis ; 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38875034

ABSTRACT

Background: Associations of plasma total tau levels with future risk of AD have been described. Objective: To examine the extent to which plasma tau reflects underlying AD brain pathology in cognitively healthy individuals. Methods: We examined cross-sectional associations of plasma total tau with 11C-Pittsburgh Compound-B (PiB)-PET and 18F-Flortaucipir (FTP)-PET in middle-aged participants at the community-based Framingham Heart Study. Results: Our final sample included 425 participants (mean age 57.6± 9.9, 50% F). Plasma total tau levels were positively associated with amyloid-ß deposition in the precuneus region (ß±SE, 0.11±0.05; p = 0.025). A positive association between plasma total tau and tau PET in the rhinal cortex was suggested in participants with higher amyloid-PET burden and in APOEɛ4 carriers. Conclusions: Our study highlights that plasma total tau is a marker of amyloid deposition as early as in middle-age.

3.
medRxiv ; 2024 May 01.
Article in English | MEDLINE | ID: mdl-38903102

ABSTRACT

Background: It is unclear how post-stroke cognitive trajectories differ by stroke type and ischemic stroke subtype. We studied associations between stroke types (ischemic, hemorrhagic), ischemic stroke subtypes (cardioembolic, large artery atherosclerotic, lacunar/small vessel, cryptogenic/other determined etiology), and post-stroke cognitive decline. Methods: This pooled cohort analysis from four US cohort studies (1971-2019) identified 1,143 dementia-free individuals with acute stroke during follow-up: 1,061 (92.8%) ischemic, 82 (7.2%) hemorrhagic, 49.9% female, 30.8% Black. Median age at stroke was 74.1 (IQR, 68.6, 79.3) years. Outcomes were change in global cognition (primary) and changes in executive function and memory (secondary). Outcomes were standardized as T-scores (mean [SD], 50 [10]); a 1-point difference represents a 0.1-SD difference in cognition. Median follow-up for the primary outcome was 6.0 (IQR, 3.2, 9.2) years. Linear mixed-effects models estimated changes in cognition after stroke. Results: On average, the initial post-stroke global cognition score was 50.78 points (95% CI, 49.52, 52.03) in ischemic stroke survivors and did not differ in hemorrhagic stroke survivors (difference, -0.17 points [95% CI, -1.64, 1.30]; P =0.82) after adjusting for demographics and pre-stroke cognition. On average, ischemic stroke survivors showed declines in global cognition, executive function, and memory. Post-stroke declines in global cognition, executive function, and memory did not differ between hemorrhagic and ischemic stroke survivors. 955 ischemic strokes had subtypes: 200 (20.9%) cardioembolic, 77 (8.1%) large artery atherosclerotic, 207 (21.7%) lacunar/small vessel, 471 (49.3%) cryptogenic/other determined etiology. On average, small vessel stroke survivors showed declines in global cognition and memory, but not executive function. Initial post-stroke cognitive scores and cognitive declines did not differ between small vessel survivors and survivors of other ischemic stroke subtypes. Post-stroke vascular risk factor levels did not attenuate associations. Conclusion: Stroke survivors had cognitive decline in multiple domains. Declines did not differ by stroke type or ischemic stroke subtype.

4.
Cell Rep Med ; 5(5): 101529, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38703765

ABSTRACT

The size of the human head is highly heritable, but genetic drivers of its variation within the general population remain unmapped. We perform a genome-wide association study on head size (N = 80,890) and identify 67 genetic loci, of which 50 are novel. Neuroimaging studies show that 17 variants affect specific brain areas, but most have widespread effects. Gene set enrichment is observed for various cancers and the p53, Wnt, and ErbB signaling pathways. Genes harboring lead variants are enriched for macrocephaly syndrome genes (37-fold) and high-fidelity cancer genes (9-fold), which is not seen for human height variants. Head size variants are also near genes preferentially expressed in intermediate progenitor cells, neural cells linked to evolutionary brain expansion. Our results indicate that genes regulating early brain and cranial growth incline to neoplasia later in life, irrespective of height. This warrants investigation of clinical implications of the link between head size and cancer.


Subject(s)
Genome-Wide Association Study , Head , Neoplasms , Humans , Head/anatomy & histology , Neoplasms/genetics , Neoplasms/pathology , Female , Male , Polymorphism, Single Nucleotide/genetics , Genetic Variation , Organ Size/genetics , Signal Transduction/genetics , Adult , Genetic Predisposition to Disease
5.
Stroke ; 55(6): 1601-1608, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38690658

ABSTRACT

BACKGROUND: A coordinated network of circulating inflammatory molecules centered on the pleotropic pro-atherogenic cytokine interleukin-18 (IL-18) is linked to cerebral small vessel disease. We sought to validate the association of this inflammatory biomarker network with incident stroke risk, cognitive impairment, and imaging metrics in a sample of the Framingham Offspring Cohort. METHODS: Using available baseline measurements of serum levels of IL-18, GDF (growth and differentiation factor)-15, soluble form of receptor for advanced glycation end products, myeloperoxidase, and MCP-1 (monocyte chemoattractant protein-1) from Exam 7 of the Framingham Offspring Cohort (1998-2001), we constructed a population-normalized, equally weighted log-transformed mean Z-score value representing the average level of each serum analyte to create an inflammatory composite score (ICS5). Multivariable regression models were used to determine the association of ICS5 with incident stroke, brain magnetic resonance imaging features, and cognitive testing performance. RESULTS: We found a significant association between ICS5 score and increased risk for incident all-cause stroke (hazard ratio, 1.48 [95% CI, 1.05-2.08]; P=0.024) and ischemic stroke (hazard ratio, 1.51 [95% CI, 1.03-2.21]; P=0.033) in the Exam 7 cohort of 2201 subjects (mean age 62±9 years; 54% female) aged 45+ years with an all-cause incident stroke rate of 6.1% (135/2201) and ischemic stroke rate of 4.9% (108/2201). ICS5 and its component serum markers are all associated with the Framingham Stroke Risk Profile score (ß±SE, 0.19±0.02; P<0.0001). In addition, we found a significant inverse association of ICS5 with a global cognitive score, derived from a principal components analysis of the neuropsychological battery used in the Framingham cohort (-0.08±0.03; P=0.019). No association of ICS5 with magnetic resonance imaging metrics of cerebral small vessel disease was observed. CONCLUSIONS: Circulating serum levels of inflammatory biomarkers centered on IL-18 are associated with an increased risk of stroke and cognitive impairment in the Framingham Offspring Cohort. Linking specific inflammatory pathways to cerebral small vessel disease may enhance individualized quantitative risk assessment for future stroke and vascular cognitive impairment.


Subject(s)
Biomarkers , Inflammation , Interleukin-18 , Stroke , Humans , Male , Female , Biomarkers/blood , Stroke/blood , Stroke/epidemiology , Stroke/diagnostic imaging , Middle Aged , Interleukin-18/blood , Aged , Inflammation/blood , Cohort Studies , Incidence , Risk Factors , Magnetic Resonance Imaging , Cognitive Dysfunction/blood , Cognitive Dysfunction/epidemiology , Cognitive Dysfunction/diagnostic imaging
6.
J Alzheimers Dis ; 99(4): 1473-1484, 2024.
Article in English | MEDLINE | ID: mdl-38820017

ABSTRACT

Background: Loneliness has been declared an "epidemic" associated with negative physical, mental, and cognitive health outcomes such as increased dementia risk. Less is known about the relationship between loneliness and advanced neuroimaging correlates of Alzheimer's disease (AD). Objective: To assess whether loneliness was associated with advanced neuroimaging markers of AD using neuroimaging data from Framingham Heart Study (FHS) participants without dementia. Methods: In this cross-sectional observational analysis, we used functional connectivity MRI (fcMRI), amyloid-ß (Aß) PET, and tau PET imaging data collected between 2016 and 2019 on eligible FHS cohort participants. Loneliness was defined as feeling lonely at least one day in the past week. The primary fcMRI marker was Default Mode Network intra-network connectivity. The primary PET imaging markers were Aß deposition in precuneal and FLR (frontal, lateral parietal and lateral temporal, retrosplenial) regions, and tau deposition in the amygdala, entorhinal, and rhinal regions. Results: Of 381 participants (mean age 58 [SD 10]) who met inclusion criteria for fcMRI analysis, 5% were classified as lonely (17/381). No association was observed between loneliness status and network changes. Of 424 participants (mean age 58 [SD = 10]) meeting inclusion criteria for PET analyses, 5% (21/424) were lonely; no associations were observed between loneliness and either Aß or tau deposition in primary regions of interest. Conclusions: In this cross-sectional study, there were no observable associations between loneliness and select fcMRI, Aß PET, and tau PET neuroimaging markers of AD risk. These findings merit further investigation in prospective studies of community-based cohorts.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Loneliness , Magnetic Resonance Imaging , Positron-Emission Tomography , tau Proteins , Humans , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/metabolism , Alzheimer Disease/psychology , Male , Female , Amyloid beta-Peptides/metabolism , Cross-Sectional Studies , tau Proteins/metabolism , Loneliness/psychology , Middle Aged , Aged , Brain/diagnostic imaging , Brain/metabolism , Biomarkers , Neuroimaging
7.
Article in English | MEDLINE | ID: mdl-38565317

ABSTRACT

BACKGROUND AND HYPOTHESIS: It remains unclear if the relation of chronic kidney disease (CKD) with cognitive dysfunction is independent of blood pressure (BP). We evaluated kidney function in relation to premorbid BP measurements, cerebral small vessel disease (CSVD) and incident mild cognitive impairment (MCI) and dementia in Framingham Offspring Cohort participants. METHODS: We included Framingham Offspring participants free of dementia, attending an examination during midlife (exam cycle 6, baseline) for ascertainment of kidney function status, with brain MRI late in life (exam cycles 7-9), cognitive outcome data and available interim hypertension and blood pressure assessments. We related CKD (estimated glomerular filtration rate < 60 ml/min/1.73m2) and albuminuria (urine albumin-to-creatinine ratio ≥ 30 mg/g) to CSVD markers and cognitive outcomes using multivariable regression analyses. RESULTS: Among 2604 participants (mean age 67.4 ± 9.2, 64% women, 7% had CKD and 9% albuminuria), albuminuria was independently associated with covert infarcts (adjusted OR, 1.55 [1.00-2.38]; P = 0.049) and incident MCI and dementia (adjusted HR, 1.68 [1.18-2.41]; P = 0.005 and 1.71, [1.11-2.64]; P = 0.015, respectively). CKD was not associated with CSVD markers but was associated with higher risk of incident dementia (HR, 1.53 [1.02-2.29]; P = 0.041), While albuminuria was predictive of the Alzheimer's disease subtype (Adjusted HR = 1.68, [1.03-2.74]; P = 0.04), CKD was predictive of vascular dementia (Adjusted HR, 2.78, [1.16-6.68]; P = 0.023). CONCLUSIONS: Kidney disease was associated with CSVD and cognitive disorders in asymptomatic community dwelling participants. The relation was independent of premorbid BP, suggesting that the link between kidney and brain disease may involve additional mechanisms beyond blood pressure related injury.

8.
JAMA Neurol ; 81(5): 471-480, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38526486

ABSTRACT

Importance: Human brain development and maintenance is under both genetic and environmental influences that likely affect later-life dementia risk. Objective: To examine environmental influences by testing whether time-dependent secular differences occurred in cranial and brain volumes and cortical thickness over birth decades spanning 1930 to 1970. Design, Setting, and Participants: This cross-sectional study used data from the community-based Framingham Heart Study cohort for participants born in the decades 1930 to 1970. Participants did not have dementia or history of stroke and had magnetic resonance imaging (MRI) obtained from March 18, 1999, to November 15, 2019. The final analysis dataset was created in October 2023. Exposure: Years of birth ranging from 1925 to 1968. Main Measures: Cross-sectional analysis of intracranial, cortical gray matter, white matter, and hippocampal volumes as well as cortical surface area and cortical thickness. The secular measure was the decade in which the participant was born. Covariates included age at MRI and sex. Results: The main study cohort consisted of 3226 participants with a mean (SD) age of 57.7 (7.8) years at the time of their MRI. A total of 1706 participants were female (53%) and 1520 (47%) were male. The birth decades ranged from the 1930s to 1970s. Significant trends for larger intracranial, hippocampal, and white matter volumes and cortical surface area were associated with progressive birth decades. Comparing the 1930s birth decade to the 1970s accounted for a 6.6% greater volume (1234 mL; 95% CI, 1220-1248, vs 1321 mL; 95% CI, 1301-1341) for ICV, 7.7% greater volume (441.9 mL; 95% CI, 435.2-448.5, vs 476.3 mL; 95% CI, 467.0-485.7) for white matter, 5.7% greater value (6.51 mL; 95% CI, 6.42-6.60, vs 6.89 mL; 95% CI, 6.77-7.02) for hippocampal volume, and a 14.9% greater value (1933 cm2; 95% CI, 1908-1959, vs 2222 cm2; 95% CI, 2186-2259) for cortical surface area. Repeat analysis applied to a subgroup of 1145 individuals of similar age range born in the 1940s (mean [SD] age, 60.0 [2.8] years) and 1950s (mean [SD] age, 59.0 [2.8] years) resulted in similar findings. Conclusion and Relevance: In this study, secular trends for larger brain volumes suggested improved brain development among individuals born between 1930 and 1970. Early life environmental influences may explain these results and contribute to the declining dementia incidence previously reported in the Framingham Heart Study cohort.


Subject(s)
Magnetic Resonance Imaging , Humans , Female , Male , Middle Aged , Cross-Sectional Studies , Aged , Organ Size , Brain/diagnostic imaging , Brain/pathology , Cohort Studies , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/anatomy & histology , Hippocampus/diagnostic imaging , Hippocampus/anatomy & histology , Hippocampus/pathology , Gray Matter/diagnostic imaging , Gray Matter/pathology , White Matter/diagnostic imaging , White Matter/pathology
9.
Neurology ; 102(7): e209198, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38471064

ABSTRACT

BACKGROUND AND OBJECTIVES: Neurotrophic factors (NTFs) play an important role in Alzheimer disease (AD) pathophysiology. Brain-derived neurotrophic factor (BDNF) and vascular endothelial growth factor (VEGF) are important NTFs. However, a direct link of BDNF and VEGF circulating levels with in vivo measures of amyloid-ß (Aß) and tau burden remains to be elucidated. We explored the relationship of BDNF and VEGF serum levels with future brain Aß and tau pathology in a cohort of cognitively healthy, predominantly middle-aged adults and tested for possible effect modifications by sex and menopausal status. METHODS: This cross-sectional analysis was conducted using data from the Framingham Heart Study (FHS), a community-based cohort study. The study sample included cognitively healthy participants from the FHS Offspring and Third-generation cohorts. BDNF and VEGF were measured in the third-generation cohort during examination cycles 2 (2005-2008) and 1 (2002-2005), respectively, and in the offspring cohort during examination cycle 7 (1998-2001). Participants underwent 11C-Pittsburgh compound B amyloid and 18F-Flortaucipir tau-PET imaging (2015-2021). Linear regression models were used to assess the relationship of serum BDNF and VEGF levels with regional tau and global Aß, adjusting for potential confounders. Interactions with sex and menopausal status were additionally tested. RESULTS: The sample included 414 individuals (mean age = 41 ± 9 years; 51% female). Continuous measures of BDNF and VEGF were associated with tau signal in the rhinal region after adjustment for potential confounders (ß = -0.15 ± 0.06, p = 0.018 and ß = -0.19 ± 0.09, p = 0.043, respectively). High BDNF (≥32,450 pg/mL) and VEGF (≥488 pg/mL) levels were significantly related to lower rhinal tau (ß = -0.27 ± 0.11, p = 0.016 and ß = -0.40 ± 0.14, p = 0.004, respectively) and inferior temporal tau (ß = -0.24 ± 0.11, p = 0.028 and ß = -0.26 ± 0.13, p = 0.049, respectively). The BDNF-rhinal tau association was observed only among male individuals. Overall, BDNF and VEGF were not associated with global amyloid; however, high VEGF levels were associated with lower amyloid burden in postmenopausal women (ß = -1.96 ± 0.70, p = 0.013, per 1 pg/mL). DISCUSSION: This study demonstrates a robust association between BDNF and VEGF serum levels with in vivo measures of tau almost 2 decades later. These findings add to mounting evidence from preclinical studies suggesting a role of NTFs as valuable blood biomarkers for AD risk prediction.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Adult , Middle Aged , Humans , Male , Female , Vascular Endothelial Growth Factor A , Brain-Derived Neurotrophic Factor , tau Proteins/metabolism , Cohort Studies , Cross-Sectional Studies , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Amyloid/metabolism , Positron-Emission Tomography , Cognitive Dysfunction/metabolism
10.
Neurology ; 102(1): e207807, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38165370

ABSTRACT

BACKGROUND AND OBJECTIVES: Both short and long sleep duration were previously associated with incident dementia, but underlying mechanisms remain unclear. We evaluated how self-reported sleep duration and its change over time associate with (A)myloid, (T)au, (N)eurodegeneration, and (V)ascular neuroimaging markers of Alzheimer disease. METHODS: Two Framingham Heart Study overlapping samples were studied: participants who underwent 11C-Pittsburg Compound B amyloid and 18F-flortaucipir tau PET imaging and participants who underwent an MRI. MRI metrics estimated neurodegeneration (total brain volume) and cerebrovascular injuries (white matter hyperintensities [WMHs] volume, covert brain infarcts, free-water [FW] fraction). Self-reported sleep duration was assessed and split into categories both at the time of neuroimaging testing and approximately 13 years before: short ≤6 hours. average 7-8 hours, and long ≥9 hours. Logistic and linear regression models were used to examine sleep duration and neuroimaging metrics. RESULTS: The tested cohort was composed of 271 participants (age 53.6 ± 8.0 years; 51% male) in the PET imaging sample and 2,165 participants (age 61.3 ± 11.1 years; 45% male) in the MRI sample. No fully adjusted association was observed between cross-sectional sleep duration and neuroimaging metrics. In fully adjusted models compared with consistently sleeping 7-8 hours, groups transitioning to a longer sleep duration category over time had higher FW fraction (short to average ß [SE] 0.0062 [0.0024], p = 0.009; short to long ß [SE] 0.0164 [0.0076], p = 0.031; average to long ß [SE] 0.0083 [0.0022], p = 0.002), and those specifically going from average to long sleep duration also had higher WMH burden (ß [SE] 0.29 [0.11], p = 0.007). The opposite associations (lower WMH and FW) were observed in participants consistently sleeping ≥9 hours as compared with people consistently sleeping 7-8 hours in fully adjusted models (ß [SE] -0.43 [0.20], p = 0.028; ß [SE] -0.019 [0.004], p = 0.020). Each hour of increasing sleep (continuous, ß [SE] 0.12 [0.04], p = 0.003; ß [SE] 0.002 [0.001], p = 0.021) and extensive increase in sleep duration (≥2 hours vs 0 ± 1 hour change; ß [SE] 0.24 [0.10], p = 0.019; ß [SE] 0.0081 [0.0025], p = 0.001) over time was associated with higher WMH burden and FW fraction in fully adjusted models. Sleep duration change was not associated with PET amyloid or tau outcomes. DISCUSSION: Longer self-reported sleep duration over time was associated with neuroimaging biomarkers of cerebrovascular pathology as evidenced by higher WMH burden and FW fraction. A longer sleep duration extending over time may be an early change in the neurodegenerative trajectory.


Subject(s)
Amyloidogenic Proteins , Sleep Duration , Male , Humans , Middle Aged , Aged , Female , Cross-Sectional Studies , Neuroimaging , Biomarkers
11.
Neurology ; 102(4): e208075, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38290090

ABSTRACT

BACKGROUND AND OBJECTIVES: Higher YKL-40 levels in the CSF are a known biomarker of brain inflammation. We explored the utility of plasma YKL-40 as a biomarker for accelerated brain aging and dementia risk. METHODS: We performed cross-sectional and prospective analyses of 4 community-based cohorts in the United States or Europe: the Age, Gene/Environment Susceptibility-Reykjavik Study, Atherosclerosis Risk in the Communities study, Coronary Artery Risk Development in Young Adults study, and Framingham Heart Study (FHS). YKL-40 was measured from stored plasma by a single laboratory using Mesoscale Discovery with levels log transformed and standardized within each cohort. Outcomes included MRI total brain volume, hippocampal volume, and white matter hyperintensity volume (WMHV) as a percentage of intracranial volume, a general cognitive composite derived from neuropsychological testing (SD units [SDU]), and the risk of incident dementia. We sought to replicate associations with dementia in the clinic-based ACE csf cohort, which also had YKL-40 measured from the CSF. RESULTS: Meta-analyses of MRI outcomes included 6,558 dementia-free participants, and for analysis of cognition, 6,670. The blood draw preceded MRI/cognitive assessment by up to 10.6 years across cohorts. The mean ages ranged from 50 to 76 years, with 39%-48% male individuals. In random-effects meta-analysis of study estimates, each SDU increase in log-transformed YKL-40 levels was associated with smaller total brain volume (ß = -0.33; 95% CI -0.45 to -0.22; p < 0.0001) and poorer cognition (ß = -0.04; 95% CI -0.07 to -0.02; p < 0.01), following adjustments for demographic variables. YKL-40 levels did not associate with hippocampal volume or WMHV. In the FHS, each SDU increase in log YKL-40 levels was associated with a 64% increase in incident dementia risk over a median of 5.8 years of follow-up, following adjustments for demographic variables (hazard ratio 1.64; 95% CI 1.25-2.16; p < 0.001). In the ACE csf cohort, plasma and CSF YKL-40 were correlated (r = 0.31), and both were associated with conversion from mild cognitive impairment to dementia, independent of amyloid, tau, and neurodegeneration status. DISCUSSION: Higher plasma YKL-40 levels were associated with lower brain volume, poorer cognition, and incident dementia. Plasma YKL-40 may be useful for studying the association of inflammation and its treatment on dementia risk.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Dementia , Aged , Female , Humans , Male , Middle Aged , Biomarkers , Brain/diagnostic imaging , Chitinase-3-Like Protein 1 , Cognition , Cross-Sectional Studies , Dementia/diagnostic imaging , Magnetic Resonance Imaging , Prospective Studies
12.
J Am Geriatr Soc ; 72(1): 194-200, 2024 01.
Article in English | MEDLINE | ID: mdl-37933827

ABSTRACT

BACKGROUND: It is not known whether bone mineral density (BMD) measured at baseline or as the rate of decline prior to baseline (prior bone loss) is a stronger predictor of incident dementia or Alzheimer's disease (AD). METHODS: We performed a meta-analysis of three longitudinal studies, the Framingham Heart Study (FHS), the Rotterdam Study (RS), and the Rush Memory and Aging Project (MAP), modeling the time to diagnosis of dementia as a function of BMD measures accounting for covariates. We included individuals with one or two BMD assessments, aged ≥60 years, and free of dementia at baseline with follow-up available. BMD was measured at the hip femoral neck using dual-energy X-ray absorptiometry (DXA), or at the heel calcaneus using quantitative ultrasound to calculate estimated BMD (eBMD). BMD at study baseline ("baseline BMD") and annualized percentage change in BMD prior to baseline ("prior bone loss") were included as continuous measures. The primary outcome was incident dementia diagnosis within 10 years of baseline, and incident AD was a secondary outcome. Baseline covariates included age, sex, body mass index, ApoE4 genotype, and education. RESULTS: The combined sample size across all three studies was 4431 with 606 incident dementia diagnoses, 498 of which were AD. A meta-analysis of baseline BMD across three studies showed higher BMD to have a significant protective association with incident dementia with a hazard ratio of 0.47 (95% CI: 0.23-0.96; p = 0.038) per increase in g/cm2 , or 0.91 (95% CI: 0.84-0.995) per standard deviation increase. We observed a significant association between prior bone loss and incident dementia with a hazard ratio of 1.30 (95% CI: 1.12-1.51; p < 0.001) per percent increase in prior bone loss only in the FHS cohort. CONCLUSIONS: Baseline BMD but not prior bone loss was associated with incident dementia in a meta-analysis across three studies.


Subject(s)
Alzheimer Disease , Bone Diseases, Metabolic , Humans , Bone Density , Absorptiometry, Photon , Longitudinal Studies
13.
Hypertension ; 81(1): 87-95, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37855140

ABSTRACT

BACKGROUND: Hypertension is the most potent stroke risk factor and is also related to cerebral small vessel disease. We studied the relation between mid-to-late-life hypertension trends and cerebral white matter injury in community-dwelling individuals from the FHS (Framingham Heart Study). METHODS: FHS Offspring cohort participants with available mid-life and late-life blood pressure measurements and brain magnetic resonance imaging were included. Multiple regression analyses were used to relate hypertension trends (normotension-normotension [reference], normotension-hypertension, and hypertension-hypertension) to white matter injury metrics on diffusion tensor imaging (free water, fractional anisotropy, and peak skeletonized mean diffusivity) and Fluid Attenuated Inversion Recovery (white matter hyperintensity volume) by different blood pressure cutoffs (130/80, 140/90, and 150/90 mm Hg). RESULTS: We included 1018 participants (mean age 47.3±7.4 years at mid-life and 73.2±7.3 at late-life). At the 140/90 mm Hg cutoff, the hypertension-hypertension trend was associated with higher free water (ß, 0.16 [95% CI, 0.03-0.30]; P=0.021) and peak skeletonized mean diffusivity (ß, 0.15 [95% CI, 0.01-0.29]; P=0.033). At a 130/80 mm Hg cutoff, the hypertension-hypertension trend had significantly higher free water (ß, 0.16 [95% CI, 0.01-0.30]; P=0.035); and the normotension-hypertension (ß, 0.24 [95% CI, 0.03-0.44]; P=0.027) and hypertension-hypertension (ß, 0.22 [95% CI, 0.04-0.41]; P=0.022) trends had significantly increased white matter hyperintensity volume. Exploratory stratified analysis showed effect modifications by APOE ɛ4 allele and age. CONCLUSIONS: Mid-to-late-life hypertension exposure is significantly associated with microstructural and to a lesser extent, visible white matter injury; the effects are observed at both conventional and lower blood pressure cutoffs and are associated with longer duration of hypertension.


Subject(s)
Brain Injuries , Hypertension , White Matter , Humans , Adult , Middle Aged , Diffusion Tensor Imaging/methods , White Matter/diagnostic imaging , White Matter/pathology , Brain , Magnetic Resonance Imaging/methods , Longitudinal Studies , Brain Injuries/pathology , Water
14.
Alzheimers Dement ; 20(3): 1881-1893, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38147416

ABSTRACT

INTRODUCTION: Early risk stratification for clinical dementia could lead to preventive therapies. We identified and validated a magnetic resonance imaging (MRI) signature for Alzheimer's disease (AD) and related dementias (ARDR). METHODS: An MRI ADRD signature was derived from cortical thickness maps in Framingham Heart Study (FHS) participants with AD dementia and matched controls. The signature was related to the risk of ADRD and cognitive function in FHS. Results were replicated in the University of California Davis Alzheimer's Disease Research Center (UCD-ADRC) cohort. RESULTS: Participants in the bottom quartile of the signature had more than three times increased risk for ADRD compared to those in the upper three quartiles (P < 0.001). Greater thickness in the signature was related to better general cognition (P < 0.01) and episodic memory (P = 0.01). Results replicated in UCD-ADRC. DISCUSSION: We identified a robust neuroimaging biomarker for persons at increased risk of ADRD. Other cohorts will further test the validity of this biomarker.


Subject(s)
Alzheimer Disease , Humans , Alzheimer Disease/pathology , Neuroimaging/methods , Longitudinal Studies , Biomarkers , Risk Assessment
15.
Eur J Neurol ; 31(1): e16048, 2024 01.
Article in English | MEDLINE | ID: mdl-37641505

ABSTRACT

BACKGROUND AND PURPOSE: Prior studies reported conflicting findings regarding the association of nonalcoholic fatty liver disease (NAFLD) and liver fibrosis with measures of brain health. We examined whether NAFLD and liver fibrosis are associated with structural brain imaging measures in middle- and old-age adults. METHODS: In this cross-sectional study among dementia- and stroke-free individuals, data were pooled from the Offspring and Third Generation cohorts of the Framingham Heart Study (FHS), the Rotterdam Study (RS), and the Study of Health in Pomerania. NAFLD was assessed through abdominal imaging. Transient hepatic elastography (FibroScan) was used to assess liver fibrosis in FHS and RS. Linear regression models were used to explore the relation of NAFLD and liver fibrosis with brain volumes, including total brain, gray matter, hippocampus, and white matter hyperintensities, adjusting for potential confounders. Results were combined using fixed effects meta-analysis. RESULTS: In total, 5660 and 3022 individuals were included for NAFLD and liver fibrosis analyses, respectively. NAFLD was associated with smaller volumes of total brain (ß = -3.5, 95% confidence interval [CI] = -5.4 to -1.7), total gray matter (ß = -1.9, 95% CI = -3.4 to -0.3), and total cortical gray matter (ß = -1.9, 95% CI = -3.7 to -0.01). In addition, liver fibrosis (defined as liver stiffness measure ≥8.2 kPa) was related to smaller total brain volumes (ß = -7.3, 95% CI = -11.1 to -3.5). Heterogeneity between studies was low. CONCLUSIONS: NAFLD and liver fibrosis may be directly related to brain aging. Larger and prospective studies are warranted to validate these findings and identify liver-related preventive strategies for neurodegeneration.


Subject(s)
Non-alcoholic Fatty Liver Disease , Adult , Humans , Non-alcoholic Fatty Liver Disease/diagnostic imaging , Non-alcoholic Fatty Liver Disease/complications , Cross-Sectional Studies , Liver Cirrhosis/diagnostic imaging , Liver Cirrhosis/complications , Brain/diagnostic imaging
16.
J Am Heart Assoc ; 12(23): e030935, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-38038215

ABSTRACT

BACKGROUND: Brain arterial diameters (BADs) are novel imaging biomarkers of cerebrovascular disease, cognitive decline, and dementia. Traditional vascular risk factors have been associated with BADs, but whether there may be genetic determinants of BADs is unknown. METHODS AND RESULTS: The authors studied 4150 participants from 6 geographically diverse population-based cohorts (40% European, 14% African, 22% Hispanic, 24% Asian ancestries). Brain arterial diameters for 13 segments were measured and averaged to obtain a global measure of BADs as well as the posterior and anterior circulations. A genome-wide association study revealed 14 variants at one locus associated with global BAD at genome-wide significance (P<5×10-8) (top single-nucleotide polymorphism, rs7921574; ß=0.06 [P=1.54×10-8]). This locus mapped to an intron of CNNM2. A trans-ancestry genome-wide association study meta-analysis identified 2 more loci at NT5C2 (rs10748839; P=2.54×10-8) and AS3MT (rs10786721; P=4.97×10-8), associated with global BAD. In addition, 2 single-nucleotide polymorphisms colocalized with expression of CNNM2 (rs7897654; ß=0.12 [P=6.17×10-7]) and AL356608.1 (rs10786719; ß=-0.17 [P=6.60×10-6]) in brain tissue. For the posterior BAD, 2 variants at one locus mapped to an intron of TCF25 were identified (top single-nucleotide polymorphism, rs35994878; ß=0.11 [P=2.94×10-8]). For the anterior BAD, one locus at ADAP1 was identified in trans-ancestry genome-wide association analysis (rs34217249; P=3.11×10-8). CONCLUSIONS: The current study reveals 3 novel risk loci (CNNM2, NT5C2, and AS3MT) associated with BADs. These findings may help elucidate the mechanism by which BADs may influence cerebrovascular health.


Subject(s)
Chromosomes, Human, Pair 10 , Genome-Wide Association Study , Humans , Brain , Genetic Predisposition to Disease , Methyltransferases/genetics , Polymorphism, Single Nucleotide , Chromosomes, Human, Pair 10/genetics
17.
Commun Biol ; 6(1): 1117, 2023 11 03.
Article in English | MEDLINE | ID: mdl-37923804

ABSTRACT

Identifying circulating proteins associated with cognitive function may point to biomarkers and molecular process of cognitive impairment. Few studies have investigated the association between circulating proteins and cognitive function. We identify 246 protein measures quantified by the SomaScan assay as associated with cognitive function (p < 4.9E-5, n up to 7289). Of these, 45 were replicated using SomaScan data, and three were replicated using Olink data at Bonferroni-corrected significance. Enrichment analysis linked the proteins associated with general cognitive function to cell signaling pathways and synapse architecture. Mendelian randomization analysis implicated higher levels of NECTIN2, a protein mediating viral entry into neuronal cells, with higher Alzheimer's disease (AD) risk (p = 2.5E-26). Levels of 14 other protein measures were implicated as consequences of AD susceptibility (p < 2.0E-4). Proteins implicated as causes or consequences of AD susceptibility may provide new insight into the potential relationship between immunity and AD susceptibility as well as potential therapeutic targets.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Middle Aged , Humans , Aged , Cognition , Neurons , Biomarkers
18.
J Alzheimers Dis ; 96(4): 1767-1780, 2023.
Article in English | MEDLINE | ID: mdl-38007645

ABSTRACT

BACKGROUND: Alzheimer's disease and related dementias (ADRD) involve biological processes that begin years to decades before onset of clinical symptoms. The plasma proteome can offer insight into brain aging and risk of incident dementia among cognitively healthy adults. OBJECTIVE: To identify biomarkers and biological pathways associated with neuroimaging measures and incident dementia in two large community-based cohorts by applying a correlation-based network analysis to the plasma proteome. METHODS: Weighted co-expression network analysis of 1,305 plasma proteins identified four modules of co-expressed proteins, which were related to MRI brain volumes and risk of incident dementia over a median 20-year follow-up in Framingham Heart Study (FHS) Offspring cohort participants (n = 1,861). Analyses were replicated in the Cardiovascular Health Study (CHS) (n = 2,117, mean 6-year follow-up). RESULTS: Two proteomic modules, one related to protein clearance and synaptic maintenance (M2) and a second to inflammation (M4), were associated with total brain volume in FHS (M2: p = 0.014; M4: p = 4.2×10-5). These modules were not significantly associated with hippocampal volume, white matter hyperintensities, or incident all-cause or AD dementia. Associations with TCBV did not replicate in CHS, an older cohort with a greater burden of comorbidities. CONCLUSIONS: Proteome networks implicate an early role for biological pathways involving inflammation and synaptic function in preclinical brain atrophy, with implications for clinical dementia.


Subject(s)
Alzheimer Disease , Dementia , Humans , Dementia/diagnostic imaging , Proteome , Proteomics , Brain/diagnostic imaging , Aging , Biomarkers , Magnetic Resonance Imaging , Inflammation
19.
Clin Epigenetics ; 15(1): 173, 2023 10 27.
Article in English | MEDLINE | ID: mdl-37891690

ABSTRACT

BACKGROUND: Insulin resistance (IR) is a major risk factor for Alzheimer's disease (AD) dementia. The mechanisms by which IR predisposes to AD are not well-understood. Epigenetic studies may help identify molecular signatures of IR associated with AD, thus improving our understanding of the biological and regulatory mechanisms linking IR and AD. METHODS: We conducted an epigenome-wide association study of IR, quantified using the homeostatic model assessment of IR (HOMA-IR) and adjusted for body mass index, in 3,167 participants from the Framingham Heart Study (FHS) without type 2 diabetes at the time of blood draw used for methylation measurement. We identified DNA methylation markers associated with IR at the genome-wide level accounting for multiple testing (P < 1.1 × 10-7) and evaluated their association with neurological traits in participants from the FHS (N = 3040) and the Religious Orders Study/Memory and Aging Project (ROSMAP, N = 707). DNA methylation profiles were measured in blood (FHS) or dorsolateral prefrontal cortex (ROSMAP) using the Illumina HumanMethylation450 BeadChip. Linear regressions (ROSMAP) or mixed-effects models accounting for familial relatedness (FHS) adjusted for age, sex, cohort, self-reported race, batch, and cell type proportions were used to assess associations between DNA methylation and neurological traits accounting for multiple testing. RESULTS: We confirmed the strong association of blood DNA methylation with IR at three loci (cg17901584-DHCR24, cg17058475-CPT1A, cg00574958-CPT1A, and cg06500161-ABCG1). In FHS, higher levels of blood DNA methylation at cg00574958 and cg17058475 were both associated with lower IR (P = 2.4 × 10-11 and P = 9.0 × 10-8), larger total brain volumes (P = 0.03 and P = 9.7 × 10-4), and smaller log lateral ventricular volumes (P = 0.07 and P = 0.03). In ROSMAP, higher levels of brain DNA methylation at the same two CPT1A markers were associated with greater risk of cognitive impairment (P = 0.005 and P = 0.02) and higher AD-related indices (CERAD score: P = 5 × 10-4 and 0.001; Braak stage: P = 0.004 and P = 0.01). CONCLUSIONS: Our results suggest potentially distinct epigenetic regulatory mechanisms between peripheral blood and dorsolateral prefrontal cortex tissues underlying IR and AD at CPT1A locus.


Subject(s)
Alzheimer Disease , Diabetes Mellitus, Type 2 , Insulin Resistance , Humans , Alzheimer Disease/genetics , Diabetes Mellitus, Type 2/genetics , DNA Methylation , Epigenesis, Genetic , Genetic Markers , Genome-Wide Association Study/methods , Insulin Resistance/genetics
20.
JAMA Neurol ; 80(12): 1326-1333, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37902739

ABSTRACT

Importance: Slow-wave sleep (SWS) supports the aging brain in many ways, including facilitating the glymphatic clearance of proteins that aggregate in Alzheimer disease. However, the role of SWS in the development of dementia remains equivocal. Objective: To determine whether SWS loss with aging is associated with the risk of incident dementia and examine whether Alzheimer disease genetic risk or hippocampal volumes suggestive of early neurodegeneration were associated with SWS loss. Design, Setting, and Participants: This prospective cohort study included participants in the Framingham Heart Study who completed 2 overnight polysomnography (PSG) studies in the time periods 1995 to 1998 and 2001 to 2003. Additional criteria for individuals in this study sample were an age of 60 years or older and no dementia at the time of the second overnight PSG. Data analysis was performed from January 2020 to August 2023. Exposure: Changes in SWS percentage measured across repeated overnight sleep studies over a mean of 5.2 years apart (range, 4.8-7.1 years). Main Outcome: Risk of incident all-cause dementia adjudicated over 17 years of follow-up from the second PSG. Results: From the 868 Framingham Heart Study participants who returned for a second PSG, this cohort included 346 participants with a mean age of 69 years (range, 60-87 years); 179 (52%) were female. Aging was associated with SWS loss across repeated overnight sleep studies (mean [SD] change, -0.6 [1.5%] per year; P < .001). Over the next 17 years of follow-up, there were 52 cases of incident dementia. In Cox regression models adjusted for age, sex, cohort, positivity for at least 1 APOE ε4 allele, smoking status, sleeping medication use, antidepressant use, and anxiolytic use, each percentage decrease in SWS per year was associated with a 27% increase in the risk of dementia (hazard ratio, 1.27; 95% CI, 1.06-1.54; P = .01). SWS loss with aging was accelerated in the presence of Alzheimer disease genetic risk (ie, APOE ε4 allele) but not hippocampal volumes measured proximal to the first PSG. Conclusions and Relevance: This cohort study found that slow-wave sleep percentage declined with aging and Alzheimer disease genetic risk, with greater reductions associated with the risk of incident dementia. These findings suggest that SWS loss may be a modifiable dementia risk factor.


Subject(s)
Alzheimer Disease , Sleep, Slow-Wave , Humans , Female , Aged , Middle Aged , Male , Alzheimer Disease/genetics , Cohort Studies , Prospective Studies , Apolipoprotein E4/genetics , Sleep
SELECTION OF CITATIONS
SEARCH DETAIL
...