Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Monit Assess ; 195(7): 841, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37318641

ABSTRACT

Potential adverse ecological effects of expanded uranium (U) mining within the Grand Canyon region motivated studies to better understand U exposure and risk to endemic species. This study documents U exposures and analyzes geochemical and biological factors affecting U bioaccumulation at spring-fed systems within the Grand Canyon region. The principal objective was to determine if aqueous U was broadly indicative of U accumulated by insect larvae, a dominate fauna. Analyses focused on three widely distributed taxa: Argia sp. (a predatory damselfly), Culicidae (suspension feeding mosquitos), and Limnephilus sp. (a detritivorous caddisfly). The study showed that U accumulated by aquatic insects (and periphyton) generally correlated positively with total dissolved U, although correlations were strongest when based on modeled concentrations of the U-dicarbonato complex, UO2(CO3)2-2, and UO2(OH)2. Sediment metal concentration was a redundant indicator of U bioaccumulation. Neither insect size or U in the gut content of Limnephilus sp. substantially affected correlations between aqueous U and whole-body U concentrations. However, in Limnephilus sp., the gut and its content contained large quantities of U. Estimates of the sediment burden in the gut indicated that sediment was a minor source of U mass but contributed substantially to the total insect weight. As a result, whole-body U concentration would tend to vary inversely with the sediment burden of the gut. The correlations between aqueous U and bioaccumulated U provide an initial relational baseline against which newly acquired data could be evaluated for changes in U exposure during and after mining operations.


Subject(s)
Uranium , Animals , Uranium/analysis , Insecta , Biological Factors , Environmental Monitoring , Water/analysis
2.
Sci Rep ; 11(1): 22157, 2021 11 16.
Article in English | MEDLINE | ID: mdl-34785687

ABSTRACT

The Grand Canyon region in northern Arizona is a home or sacred place of origin for many Native Americans and is visited by over 6 million tourists each year. Most communities in the area depend upon groundwater for all water uses. Some of the highest-grade uranium ore in the United States also is found in the Grand Canyon region. A withdrawal of over 4000 km2 of Federal land in the Grand Canyon region from new uranium mining activities for 20 years was instituted in 2012, owing in part to a lack of scientific data on potential effects from uranium mining on water resources in the area. The U.S. Geological Survey has collected groundwater chemistry samples since 1981 in the Grand Canyon region to better understand the current state of groundwater quality, to monitor for changes in groundwater quality that may be the result of mining activities, and to identify "hot spots" with elevated metal concentrations and investigate the causes. This manuscript presents results for the assessment of uranium in groundwater in the Grand Canyon region. Analytical results for uranium in groundwater in the Grand Canyon region were available for 573 samples collected from 180 spring sites and 26 wells from September 1, 1981 to October 7, 2020. Samples were collected from springs issuing from stratigraphic units above, within, and below the Permian strata that host uranium ore in breccia pipes in the area. Maximum uranium concentrations at groundwater sites in the region ranged from less than 1 µg/L at 23 sites (11%) to 100 µg/L or more at 4 sites (2%). Of the 206 groundwater sites sampled, 195 sites (95%) had maximum observed uranium concentrations less than the U.S. Environmental Protection Agency's Maximum Contaminant Level of 30 µg/L for drinking water and 177 sites (86%) had uranium concentrations less than the 15 µg/L Canadian benchmark for protection of aquatic life in freshwater. The establishment of baseline groundwater quality is an important first step in monitoring for change in water chemistry throughout mining lifecycles and beyond to ensure the health of these critical groundwater resources.

3.
Sci Total Environ ; 407(19): 5263-73, 2009 Sep 15.
Article in English | MEDLINE | ID: mdl-19596137

ABSTRACT

The Great Salt Lake (GSL) is a unique ecosystem in which trace element activity cannot be characterized by standard geochemical parameters due to the high salinity. Movement of selenium and other trace elements present in the lake bed sediments of GSL may occur due to periodic stratification displacement events or lake bed exposure. The water column of GSL is complicated by the presence of a chemocline persistent over annual to decadal time scales. The water below the chemocline is referred to as the deep brine layer (DBL), has a high salinity (16.5 to 22.9%) and is anoxic. The upper brine layer (UBL) resides above the chemocline, has lower salinity (12.6 to 14.7%) and is oxic. Displacement of the DBL may involve trace element movement within the water column due to changes in redox potential. Evidence of stratification displacement in the water column has been observed at two fixed stations on the lake by monitoring vertical water temperature profiles with horizontal and vertical velocity profiles. Stratification displacement events occur over periods of 12 to 24h and are associated with strong wind events that can produce seiches within the water column. In addition to displacement events, the DBL shrinks and expands in response to changes in the lake surface area over a period of months. Laboratory tests simulating the observed sediment re-suspension were conducted over daily, weekly and monthly time scales to understand the effect of placing anoxic bottom sediments in contact with oxic water, and the associated effect of trace element desorption and (or) dissolution. Results from the laboratory simulations indicate that a small percentage (1%) of selenium associated with anoxic bottom sediments is periodically solubilized into the UBL where it potentially can be incorporated into the biota utilizing the oxic part of GSL.


Subject(s)
Selenium/analysis , Trace Elements/analysis , Water/chemistry , Geologic Sediments/chemistry , Kinetics , Salinity , Salts/chemistry , Suspensions/chemistry , Utah , Water Movements
SELECTION OF CITATIONS
SEARCH DETAIL
...