Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Proc Biol Sci ; 291(2018): 20232478, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38471556

ABSTRACT

Defensive chemicals of prey can be sequestered by some coevolved predators, which take advantage of prey toxins for their own defence. The increase in the number of invasive species in the Anthropocene has resulted in new interactions among non-coevolved predator and prey species. While novelty in chemical defence may provide a benefit for invasive prey against non-coevolved predators, resident predators with the right evolutionary pre-adaptations might benefit from sequestering these novel defences. Here, we chose a well-known system of invasive species to test whether non-coevolved predators can sequester and use toxins from exotic prey. Together with the invasive prickly pear plants, cochineal bugs (Dactylopius spp.) are spreading worldwide from their native range in the Americas. These insects produce carminic acid, a defensive anthraquinone that some specialized predators sequester for their own defence. Using this system, we first determined whether coccinellids that prey on cochineal bugs in the Mediterranean region tolerated, sequestered, and released carminic acid in reflex bleeding. Then, we quantified the deterrent effect of carminic acid against antagonistic ants. Our results demonstrate that the Australian coccinellid Cryptolaemus montrouzieri sequestered carminic acid, a substance absent in its coevolved prey, from exotic cochineal bugs. When attacked, the predator released this substance through reflex bleeding at concentrations that were deterrent against antagonistic ants. These findings reveal that non-coevolved predators can sequester and use novel toxins from exotic prey and highlights the surprising outcomes of novel interactions that arise from species invasions.


Subject(s)
Ants , Coleoptera , Animals , Carmine , Predatory Behavior , Australia , Insecta , Introduced Species
2.
Insects ; 14(10)2023 Oct 11.
Article in English | MEDLINE | ID: mdl-37887820

ABSTRACT

In this study, two strains of the mitochondrial lineage Q1 of Bemisia tabaci MED species, characterized by a different complement of facultative bacterial endosymbionts, were tested for their susceptibility to be attacked by the parasitoid wasp Eretmocerus mundus, a widespread natural enemy of B. tabaci. Notably, the BtHC strain infected with Hamiltonella and Cardinium was more resistant to parasitization than the BtHR strain infected with Hamiltonella and Rickettsia. The resistant phenotype consisted of fewer nymphs successfully parasitized (containing the parasitoid mature larva or pupa) and in a lower percentage of adult wasps emerging from parasitized nymphs. Interestingly, the resistance traits were not evident when E. mundus parasitism was compared between BtHC and BtHR using parasitoids originating from a colony maintained on BtHC. However, when we moved the parasitoid colony on BtHR and tested E. mundus after it was reared on BtHR for four and seven generations, we saw then that BtHC was less susceptible to parasitization than BtHR. On the other hand, we did not detect any difference in the parasitization of the BtHR strain between the three generations of E. mundus tested. Our findings showed that host strain is a factor affecting the ability of E. mundus to parasitize B. tabaci and lay the basis for further studies aimed at disentangling the role of the facultative endosymbiont Cardinium and of the genetic background in the resistance of B. tabaci MED to parasitoid attack. Furthermore, they highlight that counteradaptations to the variation of B. tabaci defence mechanisms may be rapidly selected in E. mundus to maximize the parasitoid fitness.

3.
Pest Manag Sci ; 79(6): 2056-2065, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36693817

ABSTRACT

BACKGROUND: Delottococcus aberiae is an invasive mealybug that produces severe damage in Spanish citrus. This mealybug has established a mutualistic relationship with native Mediterranean ant species that may limit biological control of this pest. Herein, we evaluated the effect of tending ants on the biological control of D. aberiae. To do this, we compared: (i) the density of D. aberiae, (ii) the density of its natural enemies, and (iii) the damage produced by the mealybug in trees with (control) and without ants (ants excluded with sticky barriers) in two citrus orchards across two consecutive years. RESULTS: Lasius grandis was the most abundant ant species in both orchards and represented more than 95% of the ants tending D. aberiae in control trees. Spiders and lacewings were the most abundant predators observed in mealybug colonies, and the exclusion of mutualistic ants increased their abundance. Moreover, in control trees, ant activity throughout the year was negatively correlated with the relative abundance of predators (number of predators per mealybug). No parasitoids were recovered during field experiments. Ant exclusion reduced the density of D. aberiae and the ratio of damaged fruit at harvest across years and orchards. CONCLUSIONS: This work corroborates the previous finding that D. aberiae benefits from its mutualistic relationship with L. grandis, probably because the presence of ants reduced the abundance of generalist predators. This mutualism can be disrupted using physical barriers on on the trunk. Further research should assess other methods of ant control that are more economic and feasible for citrus producers. © 2023 Society of Chemical Industry.


Subject(s)
Ants , Citrus , Hemiptera , Animals , Symbiosis , Fruit
4.
Insects ; 12(4)2021 Apr 13.
Article in English | MEDLINE | ID: mdl-33924394

ABSTRACT

Host fruit is known to strongly affect the performance of both fruit pests and their potential natural enemies. This is particularly important in the control of tephritid fruit flies, whose larvae develop inside the fruit and thus create a set of foraging problems for parasitoids. In the present study, we assessed the response of female Aganaspis daci (Weld) (Hymenoptera: Figitidae), one of the most promising parasitoids for tephritid biocontrol in the Mediterranean Basin, to different potential host fruit species. We measured the olfactory response to medfly-infested and uninfested fruits, and several biological parameters of A. daci when different infested fruits were offered under both laboratory and greenhouse conditions. Our results showed that this parasitoid was significantly more attracted to apples and uninfested fruit. Moreover, parasitic activity was similar among the tested fruits under both conditions, showing very high values in the laboratory and a much poorer performance when conditions were variable. This suggests that A. daci may be a good candidate to be included in mass releases against the medfly regardless of the affected crop, but only when climate conditions are not expected to hinder its normal activity.

5.
Insects ; 12(1)2021 Jan 18.
Article in English | MEDLINE | ID: mdl-33477409

ABSTRACT

The current need for sustainable resource management is increasingly urgent, as demand for agricultural commodities is rising rapidly as the world's population grows [...].

6.
Insects ; 10(7)2019 Jul 18.
Article in English | MEDLINE | ID: mdl-31323827

ABSTRACT

The parasitoid Diachasmimorpha longicaudata (Ashmead) (Hymenoptera: Braconidae) is increasingly being used in integrated pest management (IPM) programs as a biological control agent in order to suppress tephritid fruit flies of economic importance. Innate and acquired behavioral responses-such as pest host fruit preference-of parasitoids can modulate their efficiency in the field and should be taken into consideration prior to parasitoid species' selection for mass-rearing. We have assessed the influence of medfly-infested (two infestation ages, 1 and 4-d-old) and uninfested fruit species on host preference and efficiency of D. longicaudata by using a multistep assay including olfactory, laboratory and semi-field trials. We found that D. longicaudata was significantly more attracted to medfly-infested apples for both infestation ages, with the oldest being the most preferred. D. longicaudata exhibited a significant preference among the four fruits tested. The implications of these behavioral responses of D. longicaudata to medfly host fruits and infestation age are discussed in relationship to its use in IPM programs in the Mediterranean basin area.

7.
Exp Appl Acarol ; 77(2): 145-159, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30820790

ABSTRACT

Traditionally persimmon cultivation has been considered a minor crop in Spain, but in recent years this crop has experienced an important increase in both cultivated area and production. This increase has been mainly attributed to the widespread adoption of a new postharvest treatment which considerably extends the fruit commercialization period. The sudden expansion of this crop has not allowed time to correctly develop an integrated pest management (IPM) program. Consequently, chemical treatments have become the main strategy to lessen the impact of pests. Given the importance of phytoseiids in other Mediterranean fruit crops, where they are the basis of IPM, we sought to determine whether they could be similarly employed in persimmon crops. For this, we studied the predatory mite complex, the phytoseiid population dynamics and the potential prey for them during three consecutive seasons in four persimmon orchards, two of which managed conventionally, and two organically. Phytoseiids were abundant throughout the season, found on average at a density of more than 1 predatory mite per leaf. The most abundant species was Euseius stipulatus (57.3%) followed by Typhlodromus phialatus (24.8%), Amblyseius andersoni (17.1%) and Paraseiulus talbii (0.8%). Persimmon leaves provided a diversity of prey for predatory mites throughout the year, the most abundant being mealybugs, coccids, whiteflies and thrips. The abundance of predatory mites was significantly correlated to the abundance of potential prey available. From our results we anticipate that phytoseiids will be key actors in the development of persimmon IPM. Their role in this crop is discussed, as well as how to conserve their populations.


Subject(s)
Food Chain , Mites/physiology , Pest Control, Biological , Predatory Behavior , Tick Control , Animals , Crops, Agricultural/growth & development , Diospyros/growth & development , Population Dynamics , Spain
8.
Genome Biol Evol ; 6(4): 1013-30, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24723729

ABSTRACT

Many insects harbor inherited bacterial endosymbionts. Although some of them are not strictly essential and are considered facultative, they can be a key to host survival under specific environmental conditions, such as parasitoid attacks, climate changes, or insecticide pressures. The whitefly Bemisia tabaci is at the top of the list of organisms inflicting agricultural damage and outbreaks, and changes in its distribution may be associated to global warming. In this work, we have sequenced and analyzed the genome of Cardinium cBtQ1, a facultative bacterial endosymbiont of B. tabaci and propose that it belongs to a new taxonomic family, which also includes Candidatus Amoebophilus asiaticus and Cardinium cEper1, endosymbionts of amoeba and wasps, respectively. Reconstruction of their last common ancestors' gene contents revealed an initial massive gene loss from the free-living ancestor. This was followed in Cardinium by smaller losses, associated with settlement in arthropods. Some of these losses, affecting cofactor and amino acid biosynthetic encoding genes, took place in Cardinium cBtQ1 after its divergence from the Cardinium cEper1 lineage and were related to its settlement in the whitefly and its endosymbionts. Furthermore, the Cardinium cBtQ1 genome displays a large proportion of transposable elements, which have recently inactivated genes and produced chromosomal rearrangements. The genome also contains a chromosomal duplication and a multicopy plasmid, which harbors several genes putatively associated with gliding motility, as well as two other genes encoding proteins with potential insecticidal activity. As gene amplification is very rare in endosymbionts, an important function of these genes cannot be ruled out.


Subject(s)
Cytophagaceae/genetics , Evolution, Molecular , Genome, Bacterial/physiology , Hemiptera/microbiology , Symbiosis/physiology , Animals , Base Sequence , Molecular Sequence Data
9.
Microsc Microanal ; 19(6): 1475-89, 2013 Dec.
Article in English | MEDLINE | ID: mdl-23985273

ABSTRACT

Aganaspis daci and Aganaspis pelleranoi (Hymenoptera: Figitidae) are important parasitoids of fruit flies. Here we studied, with light and scanning electron microscopy, aspects of their morphology that could help with plans to mass rear and thus contribute to improved pest control (preimaginal phases) and to shed light on parasitoid-pest relationships (sensillar equipment). The two species present a stalked egg, eucoiliform first and second-instar larvae and hymenopteriform third instar and mature larvae. The first instar presents tegumental differentiations in the mesoma and first metasomal segment in A. daci, but not in A. pelleranoi, while unlike other figitids, neither species displays setae in the mesosomal processes. Second and third instar and mature larvae present tegumental differentiations in A. daci, but not in A. pelleranoi. The moniliform (female) and filiform (male) antennae of A. daci and A. pelleranoi harbor seven types of sensilla, four of them (sensilla campaniformia, sensilla coeloconica type II, and two types of sensilla trichoidea) described here for the first time in Cynipoidea. The largest sensilla were the multiporous placoid sensilla, which were smaller and more numerous in A. pelleranoi. Species also differed to some extent in morphology of sensilla coeloconica. Observations on the ovipositor revealed the presence of coeloconic sensilla on Valva I in both species.


Subject(s)
Drosophila/parasitology , Hymenoptera/anatomy & histology , Hymenoptera/ultrastructure , Sensilla/ultrastructure , Animals , Arthropod Antennae/ultrastructure , Integumentary System , Microscopy , Zygote/ultrastructure
10.
J Bacteriol ; 194(23): 6654-5, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23144402

ABSTRACT

The genome of "Candidatus Portiera aleyrodidarum," the primary endosymbiont of the whitefly Bemisia tabaci (Mediterranean species), is reported. It presents a reduced genome (357 kb) encoding the capability to synthetize, or participate in the synthesis of, several amino acids and carotenoids, being the first insect endosymbiont capable of supplying carotenoids.


Subject(s)
DNA, Bacterial/chemistry , DNA, Bacterial/genetics , Genome, Bacterial , Halomonadaceae/genetics , Sequence Analysis, DNA , Amino Acids/metabolism , Animals , Carotenoids/metabolism , Halomonadaceae/isolation & purification , Halomonadaceae/metabolism , Halomonadaceae/physiology , Hemiptera/microbiology , Hemiptera/physiology , Molecular Sequence Data , Symbiosis
11.
Microsc Microanal ; 15(5): 422-34, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19709460

ABSTRACT

The development and morphology of the immature phases of Pachycrepoideus vindemmiae (Rondani, 1875) (Hymenoptera, Pteromalidae) are described from a laboratory rearing culture maintained on Ceratitis capitata (Wiedemann, 1824) (Diptera, Tephritidae) using microscopic techniques, including light and scanning electron microscopy. The surface of the chorion of the egg is granulated, and the micropyle occurs at the anterior end. The labrum of the first instar larva does not have sensilla, and the second to fourth instar larvae have setae on the head. The mature larva is characterized by the position and number of the integumental differentiations (sensilla and setae). On completion of larval development, an adecticous and exarate pupa is produced. As for the adult, the mandibles of the pupae are toothed. Five larval instars are recorded, based on statistical analyses of the sizes of the larval mandibles in combination with characters such as the number of exuviae and excretion of the meconium. Developmental time from egg to adult emergence was 18-20 days for males and 21-23 days for females at 21-26 degrees C, 55-85 relative humidity, and a 16L:8D photoperiod. The results show that the eggs and different larval instars of this parasitoid can be unambiguously identified only by scanning electron microscope.


Subject(s)
Ceratitis capitata/parasitology , Hymenoptera/growth & development , Animals , Female , Hymenoptera/anatomy & histology , Hymenoptera/ultrastructure , Larva/anatomy & histology , Larva/ultrastructure , Male , Microscopy , Microscopy, Electron, Scanning , Oocysts/ultrastructure , Pupa/anatomy & histology , Pupa/ultrastructure , Time Factors
12.
Micron ; 40(5-6): 646-58, 2009.
Article in English | MEDLINE | ID: mdl-19268603

ABSTRACT

The development and morphology of the immature phases of Spalangia cameroni Perkins, 1910 (Hymenoptera, Pteromalidae) are described from a laboratory rearing culture maintained on Ceratitis capitata (Wiedemann, 1824) (Diptera, Tephritidae), using microscopic techniques, including light and scanning electron microscopy. The surface of the chorion of the egg is smooth and the micropyle occurs at the anterior end. The immature larvae are similar to the mature larva, differing mainly in the size of the head capsule and mandibles. The mature larva displays tubercules on the body segments as well as a pleurostoma and superior and inferior mandibular processes. On completion of its larval development, an adecticous and exarate pupa is produced. The mandibles of the pupa, as for the adult, are toothed. Three larval instars are recorded based on statistical analyses of the sizes of the larval mandibles and head capsules, in combination with such characters as the number of exuviae and excretion of the meconium. There are significant positive correlations between mandible length and width of larval head capsule with the number of instars, thus indicating that the mandible length and width of larval capsule are good predictors of the number of instars in this parasitoid. Developmental time from egg to adult emergence was approximately 33-34 days for females and approximately 28-29 days for males at 21-26 degrees C, 55-85 RH and a L16:D8 photoperiod. Our results show that the eggs and different instars of S. cameroni can be unambiguously identified only by SEM. Therefore, characterization of the immature stages of Spalangia species using SEM should be done before subsequent routine identifications using a binocular microscope or stereomicroscope.


Subject(s)
Ceratitis capitata/parasitology , Hymenoptera/anatomy & histology , Hymenoptera/growth & development , Animal Structures/anatomy & histology , Animal Structures/ultrastructure , Animals , Hymenoptera/ultrastructure , Larva/anatomy & histology , Larva/ultrastructure , Microscopy , Microscopy, Electron, Scanning , Temperature , Time Factors
13.
Phytopathology ; 93(11): 1422-9, 2003 Nov.
Article in English | MEDLINE | ID: mdl-18944071

ABSTRACT

ABSTRACT The genetic structure of field populations of begomoviruses and their whitefly vector Bemisia tabaci in Pakistan was analyzed. Begomoviruses and B. tabaci populations were sampled from different crops and weeds in different locations in Punjab and Sindh provinces, in areas where cotton leaf curl disease (CLCuD) occurs or does not occur. Phylogenetic analysis based on nucleotide sequences of the intergenic region in the viral DNA-A provided evidence of two clusters of isolates: viruses isolated from species in the family Malvaceae, and viruses isolated from other dicotyledon families. Analysis of the capsid protein (CP) open reading frame grouped isolates into three geographical clusters, corresponding to isolates collected in Punjab, Sindh, or both provinces. Random amplified polymorphic DNA analyses of the B. tabaci population showed that intrapopulation diversity was high at both the local and regional scales. Sequence analysis of the mitocondrial cytochrome oxydase I (mt COI) gene showed that the B. tabaci population was structured into at least three genetic lineages corresponding to the previously described Indian, Southeast Asian, and Mediterranean-African clades. The Indian clade was present only in Punjab, the Mediterranean-African only in Sindh, and the Southeast Asian in both provinces. B. tabaci haplotypes of the Indian clade were found only in the Punjab, where CLCuD occurs. Hence, the geographical distribution of virus and vector genotypes may be correlated, because similar phylogenetic relationships were detected for the viral CP and the vector mt COI genes.

SELECTION OF CITATIONS
SEARCH DETAIL
...