Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 20(1)2018 Dec 22.
Article in English | MEDLINE | ID: mdl-30583489

ABSTRACT

Space radiation and microgravity (µG) are two major environmental stressors for humans in space travel. One of the fundamental questions in space biology research is whether the combined effects of µG and exposure to cosmic radiation are interactive. While studies addressing this question have been carried out for half a century in space or using simulated µG on the ground, the reported results are ambiguous. For the assessment and management of human health risks in future Moon and Mars missions, it is necessary to obtain more basic data on the molecular and cellular responses to the combined effects of radiation and µG. Recently we incorporated a µG⁻irradiation system consisting of a 3D clinostat synchronized to a carbon-ion or X-ray irradiation system. Our new experimental setup allows us to avoid stopping clinostat rotation during irradiation, which was required in all other previous experiments. Using this system, human fibroblasts were exposed to X-rays or carbon ions under the simulated µG condition, and chromosomes were collected with the premature chromosome condensation method in the first mitosis. Chromosome aberrations (CA) were quantified by the 3-color fluorescent in situ hybridization (FISH) method. Cells exposed to irradiation under the simulated µG condition showed a higher frequency of both simple and complex types of CA compared to cells irradiated under the static condition by either X-rays or carbon ions.


Subject(s)
Carbon Radioisotopes/adverse effects , Chromosome Aberrations/radiation effects , Fibroblasts/radiation effects , Weightlessness Simulation/adverse effects , X-Rays/adverse effects , Cell Survival/radiation effects , Cells, Cultured , Chromosomes, Human, Pair 1/radiation effects , Chromosomes, Human, Pair 2/radiation effects , Chromosomes, Human, Pair 4/radiation effects , G2 Phase Cell Cycle Checkpoints/radiation effects , Humans , In Situ Hybridization, Fluorescence
SELECTION OF CITATIONS
SEARCH DETAIL
...