Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Brain Res ; 1829: 148776, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38253271

ABSTRACT

Amyloid-ß (Aß) accumulation is the main pathological change in Alzheimer's disease (AD), which results from the imbalance of production and clearance of Aß in the brain. Our previous study found that chronic sleep deprivation (CSD) led to the deposition of Aß in the brain by disrupting the balance of Aß production and clearance, but the specific mechanism was not clear. In the present study, we investigated the effects of oxidative stress on Aß accumulation in CSD rats. We found that the levels of reactive oxygen species (ROS) and malondialdehyde (MDA) significantly increased after CSD, while superoxide dismutase (SOD) decreased in the brain. Furthermore, the serum ROS was elevated and SOD declined after CSD. The levels of oxidative stress in the brain were significantly correlated with ß-site APP-cleaving enzyme 1 (BACE1), low-density lipoprotein receptor-related protein-1 (LRP1), and receptor of advanced glycation end products (RAGE) levels in hippocampus and prefrontal lobe, and the concentration of serum oxidative mediators were strongly correlated with plasma levels of soluble LRP1 (sLRP1) and soluble RAGE (sRAGE). These results suggested that the oxidative stress in the brain and serum may involved in the CSD-induced Aß accumulation. The underlying mechanism may be associated with disrupting the balance of Aß production and clearance.


Subject(s)
Alzheimer Disease , Sleep Deprivation , Rats , Animals , Amyloid Precursor Protein Secretases/metabolism , Reactive Oxygen Species , Aspartic Acid Endopeptidases/metabolism , Amyloid beta-Peptides/metabolism , Alzheimer Disease/pathology , Oxidative Stress , Glycation End Products, Advanced/metabolism , Superoxide Dismutase
SELECTION OF CITATIONS
SEARCH DETAIL
...