Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Chemphyschem ; : e202400023, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39046870

ABSTRACT

Iron oxide nanoflowers (IONFs) that display singular magnetic properties can be synthesized through a polyol route first introduced almost 2 decades ago by Caruntu et al, presenting a multi-core morphology in which several grains (around 10 nm) are attached together and sintered. These outstanding properties are of great interest for magnetic field hyperthermia, which is considered as a promising therapy against cancer. Although of significantly smaller diameter, the specific adsorption rate (SAR) of IONFs reach values as large as for "magnetosomes" that are natural magnetic nanoparticles typically ~40 nm found in certain bacteria, which can be grown artificially but with much lower yield compared to chemical synthesis such as the polyol route. This work aims at better understanding the structure-property relationships, linking the internal IONF nanostructure as observed by HR-TEM to their magnetic properties. A library of mono- and multicore IONFs is presented, with diameters ranging from 11 to 30 nm in a narrow size distribution. More particularly, by relating their structural features to their magnetic properties investigated by utilizing AC magnetometry over a wide range of alternating magnetic field conditions, we showed that the SAR values of all synthesized batches vary with overall diameter and number of constituting cores.

2.
Chemosphere ; 303(Pt 2): 135158, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35640691

ABSTRACT

Anthropic activities such as open pit mining, amplify the natural erosion of metals contained in the soils, particularly in New Caledonia, leading to atmospheric emission of nickel oxide nanoparticles (NiONPs). These particles are produced during extraction end up in aquatic ecosystems through deposition or leaching in the rivers. Despite alarming freshwater Ni concentrations, only few studies have focused on the cellular and molecular mechanisms of NiONPs toxicity on aquatic organisms and particularly on eels. Those fish are known to be sensitive to metal contamination, especially their liver, which is a key organ for lipid metabolism, detoxification and reproduction. The objective of this study was to assess in vitro the cytotoxic effects of NiONPs on Anguilla japonica hepatocytes, HEPA-E1. HEPA-E1 were exposed to NiONPs (0.5-5 µg/cm2) for 4 or 24 h. Several endpoints were studied: (i) viability, (ii) ROS production, SOD activity and selected anti-oxidant genes expression, (iii) inflammation, (iv) calcium signalling, (v) mitochondrial function and (vi) apoptosis. The results evidenced that NiONPs induce a decrease of cell viability and an increase in oxidative stress with a significant superoxide anion production. An increase of mitochondrial calcium concentration and a decrease of mitochondrial membrane potential were observed, leading to apoptosis. These results underline the potential toxic impact of NiONPs on eels living in mining areas. Therefore, eel exposure to NiONPs can affect their migration and reproduction in New Caledonia.


Subject(s)
Anguilla , Ecosystem , Anguilla/metabolism , Animals , Calcium/metabolism , Hepatocytes , New Caledonia
3.
Nanotoxicology ; 16(1): 29-51, 2022 02.
Article in English | MEDLINE | ID: mdl-35090355

ABSTRACT

In New Caledonia, anthropic activities, such as mining, increase the natural erosion of soils in nickel mines, which in turn, releases nickel oxide nanoparticles (NiONPs) into the atmosphere. Pulmonary vascular endothelial cells represent one of the primary targets for inhaled nanoparticles. The objective of this in vitro study was to assess the cytotoxic effects of NiONPs on human pulmonary artery endothelial cells (HPAEC). Special attention will be given to the level of oxidative stress and calcium signaling, which are involved in the physiopathology of cardiovascular diseases. HPAEC were exposed to NiONPs (0.5-150 µg/cm2) for 4 or 24 h. The following different endpoints were studied: (i) ROS production using CM-H2DCF-DA probe, electron spin resonance, and MitoSOX probe; the SOD activity was also measured (ii) calcium signaling with Fluo4-AM, Rhod-2, and Fluo4-FF probes; (iii) inflammation by IL-6 production and secretion and, (iv) mitochondrial dysfunction and apoptosis with TMRM and MitoTracker probes, and AnnexinV/PI. Our results have evidenced that NiONPs induced oxidative stress in HPAEC. This was demonstrated by an increase in ROS production and a decrease in SOD activity, the two mechanisms seem to trigger a pro-inflammatory response with IL-6 secretion. In addition, NiONPs exposure altered calcium homeostasis inducing an increased cytosolic calcium concentration ([Ca2+]i) that was significantly reduced by the extracellular calcium chelator EGTA and the TRPV4 inhibitor HC-067047. Interestingly, exposure to NiONPs also altered TRPV4 activity. Finally, HPAEC exposure to NiONPs increased intracellular levels of both ROS and calcium ([Ca2+]m) in mitochondria, leading to mitochondrial dysfunction and HPAEC apoptosis.


Subject(s)
Calcium Signaling , Endothelial Cells , Metal Nanoparticles , Mitochondria , Oxidative Stress , TRPV Cation Channels , Calcium/metabolism , Cells, Cultured , Endothelial Cells/drug effects , Humans , Interleukin-6/metabolism , Metal Nanoparticles/adverse effects , Mitochondria/pathology , Nickel/adverse effects , Pulmonary Artery/metabolism , Reactive Oxygen Species/metabolism , Superoxide Dismutase/metabolism , TRPV Cation Channels/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...