Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS Comput Biol ; 20(3): e1011941, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38484020

ABSTRACT

Interpretation of extracellular recordings can be challenging due to the long range of electric field. This challenge can be mitigated by estimating the current source density (CSD). Here we introduce kCSD-python, an open Python package implementing Kernel Current Source Density (kCSD) method and related tools to facilitate CSD analysis of experimental data and the interpretation of results. We show how to counter the limitations imposed by noise and assumptions in the method itself. kCSD-python allows CSD estimation for an arbitrary distribution of electrodes in 1D, 2D, and 3D, assuming distributions of sources in tissue, a slice, or in a single cell, and includes a range of diagnostic aids. We demonstrate its features in a Jupyter Notebook tutorial which illustrates a typical analytical workflow and main functionalities useful in validating analysis results.


Subject(s)
Electrodes , Quality Control
2.
PLoS Comput Biol ; 17(5): e1008615, 2021 05.
Article in English | MEDLINE | ID: mdl-33989280

ABSTRACT

Extracellular recording is an accessible technique used in animals and humans to study the brain physiology and pathology. As the number of recording channels and their density grows it is natural to ask how much improvement the additional channels bring in and how we can optimally use the new capabilities for monitoring the brain. Here we show that for any given distribution of electrodes we can establish exactly what information about current sources in the brain can be recovered and what information is strictly unobservable. We demonstrate this in the general setting of previously proposed kernel Current Source Density method and illustrate it with simplified examples as well as using evoked potentials from the barrel cortex obtained with a Neuropixels probe and with compatible model data. We show that with conceptual separation of the estimation space from experimental setup one can recover sources not accessible to standard methods.


Subject(s)
Brain/physiology , Models, Neurological , Animals , Computational Biology , Computer Simulation , Electrodes , Evoked Potentials/physiology , Extracellular Space/physiology , Humans , Male , Rats , Rats, Wistar , Somatosensory Cortex/physiology , Vibrissae/innervation , Vibrissae/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...