Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Redox Biol ; 72: 103133, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38565068

ABSTRACT

Prion diseases, also known as Transmissible Spongiform Encephalopathies (TSEs), are protein-based neurodegenerative disorders (NDs) affecting humans and animals. They are characterized by the conformational conversion of the normal cellular prion protein, PrPC, into the pathogenic isoform, PrPSc. Prion diseases are invariably fatal and despite ongoing research, no effective prophylactic or therapeutic avenues are currently available. Anthocyanins (ACNs) are unique flavonoid compounds and interest in their use as potential neuroprotective and/or therapeutic agents against NDs, has increased significantly in recent years. Therefore, we investigated the potential anti-oxidant and anti-prion effects of Oenin and Myrtillin, two of the most common anthocyanins, using the most accepted in the field overexpressing PrPScin vitro model and a cell free protein aggregation model. Our results, indicate both anthocyanins as strong anti-oxidant compounds, upregulating the expression of genes involved in the anti-oxidant response, and reducing the levels of Reactive Oxygen Species (ROS), produced due to pathogenic prion infection, through the activation of the Keap1-Nrf2 pathway. Importantly, they showcased remarkable anti-prion potential, as they not only caused the clearance of pathogenic PrPSc aggregates, but also completely inhibited the formation of PrPSc fibrils in the Cerebrospinal Fluid (CSF) of patients with Creutzfeldt-Jakob disease (CJD). Therefore, Oenin and Myrtillin possess pleiotropic effects, suggesting their potential use as promising preventive and/or therapeutic agents in prion diseases and possibly in the spectrum of neurodegenerative proteinopathies.


Subject(s)
Anthocyanins , NF-E2-Related Factor 2 , Reactive Oxygen Species , Anthocyanins/pharmacology , Anthocyanins/chemistry , Humans , Reactive Oxygen Species/metabolism , NF-E2-Related Factor 2/metabolism , Antioxidants/pharmacology , Prion Diseases/drug therapy , Prion Diseases/metabolism , Prion Diseases/pathology , Kelch-Like ECH-Associated Protein 1/metabolism , Animals , PrPSc Proteins/metabolism , Signal Transduction/drug effects
2.
Cancers (Basel) ; 15(20)2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37894364

ABSTRACT

CYLD is a tumor suppressor gene coding for a deubiquitinating enzyme that has a critical regulatory function in a variety of signaling pathways and biological processes involved in cancer development and progression, many of which are also key modulators of somatic cell reprogramming. Nevertheless, the potential role of CYLD in this process has not been studied. With the dual aim of investigating the involvement of CYLD in reprogramming and developing a better understanding of the intricate regulatory system governing this process, we reprogrammed control (CYLDWT/WT) and CYLD DUB-deficient (CYLDΔ9/Δ9) mouse embryonic fibroblasts (MEFs) into induced pluripotent stem cells (iPSCs) through ectopic overexpression of the Yamanaka factors (Oct3/4, Sox2, Klf4, c-myc). CYLD DUB deficiency led to significantly reduced reprogramming efficiency and slower early reprogramming kinetics. The introduction of WT CYLD to CYLDΔ9/Δ9 MEFs rescued the phenotype. Nevertheless, CYLD DUB-deficient cells were capable of establishing induced pluripotent colonies with full spontaneous differentiation potential of the three germ layers. Whole proteome analysis (Data are available via ProteomeXchange with identifier PXD044220) revealed that the mesenchymal-to-epithelial transition (MET) during the early reprogramming stages was disrupted in CYLDΔ9/Δ9 MEFs. Interestingly, differentially enriched pathways revealed that the primary processes affected by CYLD DUB deficiency were associated with the organization of the extracellular matrix and several metabolic pathways. Our findings not only establish for the first time CYLD's significance as a regulatory component of early reprogramming but also highlight its role as an extracellular matrix regulator, which has profound implications in cancer research.

3.
Cells ; 11(22)2022 11 12.
Article in English | MEDLINE | ID: mdl-36429012

ABSTRACT

RNA editing is an epitranscriptomic modification, leading to targeted changes in RNA transcripts. It is mediated by the action of ADAR (adenosine deaminases acting on double-stranded (ds) RNA and APOBEC (apolipoprotein B mRNA editing enzyme catalytic polypeptide-like) deaminases and appears to play a major role in the pathogenesis of many diseases. Here, we assessed its role in experimental autoimmune encephalomyelitis (EAE), a widely used non-clinical model of autoimmune inflammatory diseases of the central nervous system (CNS), which resembles many aspects of human multiple sclerosis (MS). We have analyzed in silico data from microglia isolated at different timepoints through disease progression to identify the global editing events and validated the selected targets in murine tissue samples. To further evaluate the functional role of RNA editing, we induced EAE in transgenic animals lacking expression of APOBEC-1. We found that RNA-editing events, mediated by the APOBEC and ADAR deaminases, are significantly reduced throughout the course of disease, possibly affecting the protein expression necessary for normal neurological function. Moreover, the severity of the EAE model was significantly higher in APOBEC-1 knock-out mice, compared to wild-type controls. Our results implicate regulatory epitranscriptomic mechanisms in EAE pathogenesis that could be extrapolated to MS and other neurodegenerative disorders (NDs) with common clinical and molecular features.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , RNA Editing , Humans , Mice , Animals , RNA Editing/genetics , APOBEC-1 Deaminase/genetics , Encephalomyelitis, Autoimmune, Experimental/genetics , RNA, Double-Stranded , Mutagenesis, Site-Directed , Mice, Knockout
4.
Biomolecules ; 12(3)2022 03 17.
Article in English | MEDLINE | ID: mdl-35327657

ABSTRACT

RNA editing contributes to transcriptome diversification through RNA modifications in relation to genome-encoded information (RNA-DNA differences, RDDs). The deamination of Adenosine (A) to Inosine (I) or Cytidine (C) to Uridine (U) is the most common type of mammalian RNA editing. It occurs as a nuclear co- and/or post-transcriptional event catalyzed by ADARs (Adenosine deaminases acting on RNA) and APOBECs (apolipoprotein B mRNA editing enzyme catalytic polypeptide-like genes). RNA editing may modify the structure, stability, and processing of a transcript. This review focuses on RNA editing in psychiatric, neurological, neurodegenerative (NDs), and autoimmune brain disorders in humans and rodent models. We discuss targeted studies that focus on RNA editing in specific neuron-enriched transcripts with well-established functions in neuronal activity, and transcriptome-wide studies, enabled by recent technological advances. We provide comparative editome analyses between human disease and corresponding animal models. Data suggest RNA editing to be an emerging mechanism in disease development, displaying common and disease-specific patterns. Commonly edited RNAs represent potential disease-associated targets for therapeutic and diagnostic values. Currently available data are primarily descriptive, calling for additional research to expand global editing profiles and to provide disease mechanistic insights. The potential use of RNA editing events as disease biomarkers and available tools for RNA editing identification, classification, ranking, and functional characterization that are being developed will enable comprehensive analyses for a better understanding of disease(s) pathogenesis and potential cures.


Subject(s)
Brain Diseases , Neurodegenerative Diseases , Adenosine/genetics , Adenosine/metabolism , Adenosine Deaminase/genetics , Adenosine Deaminase/metabolism , Animals , Brain/metabolism , Mammals/metabolism , Neurodegenerative Diseases/genetics , RNA , RNA Editing/genetics
5.
Proc Natl Acad Sci U S A ; 116(39): 19727-19735, 2019 09 24.
Article in English | MEDLINE | ID: mdl-31492812

ABSTRACT

Prion diseases are fatal neurodegenerative disorders caused by misfolding of the normal prion protein into an infectious cellular pathogen. Clinically characterized by rapidly progressive dementia and accounting for 85% of human prion disease cases, sporadic Creutzfeldt-Jakob disease (sCJD) is the prevalent human prion disease. Although sCJD neuropathological hallmarks are well-known, associated molecular alterations are elusive due to rapid progression and absence of preclinical stages. To investigate transcriptome alterations during disease progression, we utilized tg340-PRNP129MM mice infected with postmortem material from sCJD patients of the most susceptible genotype (MM1 subtype), a sCJD model that faithfully recapitulates the molecular and pathological alterations of the human disease. Here we report that transcriptomic analyses from brain cortex in the context of disease progression, reveal epitranscriptomic alterations (specifically altered RNA edited pathway profiles, eg., ER stress, lysosome) that are characteristic and possibly protective mainly for preclinical and clinical disease stages. Our results implicate regulatory epitranscriptomic mechanisms in prion disease neuropathogenesis, whereby RNA-editing targets in a humanized sCJD mouse model were confirmed in pathological human autopsy material.


Subject(s)
Prion Diseases/genetics , Prion Diseases/metabolism , RNA Editing/genetics , Animals , Brain/metabolism , Creutzfeldt-Jakob Syndrome/genetics , Disease Models, Animal , Disease Progression , Gene Expression Profiling/methods , Gene Expression Regulation/genetics , Genotype , Humans , Mice , Prion Proteins/genetics , Prions/metabolism , RNA Editing/physiology , Transcriptome/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...