Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 16(9): e0257211, 2021.
Article in English | MEDLINE | ID: mdl-34506597

ABSTRACT

Traumatic brain injury (TBI) remains a major cause of morbidity and disability worldwide and a healthcare burden. TBI is an important risk factor for neurodegenerative diseases hallmarked by exacerbated neuroinflammation. Neuroinflammation in the cerebral cortex plays a critical role in secondary injury progression following TBI. The NOD-like receptors (NLR) family pyrin domain containing 3 (NLRP3) inflammasome is a key player in initiating the inflammatory response in various central nervous system disorders entailing TBI. This current study aims to investigate the role of NLRP3 in repetitive mild traumatic brain injury (rmTBI) and identify the potential neuroprotective effect of saffron extract in regulating the NLRP3 inflammasome. 24 hours following the final injury, rmTBI causes an upregulation in mRNA levels of NLRP3, caspase-1, the apoptosis-associated speck-like protein containing a CARD (ASC), nuclear factor kappa B (NF-κB), interleukin-1Beta (IL-1ß), interleukin 18 (IL-18), nuclear factor erythroid 2-related factor 2 (NRF2) and heme oxygenase 1 (HMOX1). Protein levels of NLRP3, sirtuin 1 (SIRT1), glial fibrillary acidic protein (GFAP), ionized calcium-binding adaptor molecule 1 (Iba1), and neuronal nuclei (Neu N) also increased after rmTBI. Administration of saffron alleviated the degree of TBI, as evidenced by reducing the neuronal damage, astrocyte, and microglial activation. Pretreatment with saffron inhibited the activation of NLRP3, caspase-1, and ASC concurrent to reduced production of the inflammatory cytokines IL-1ß and IL-18. Additionally, saffron extract enhanced SIRT1 expression, NRF2, and HMOX1 upregulation. These results suggest that NLRP3 inflammasome activation and the subsequent inflammatory response in the mice cortex are involved in the process of rmTBI. Saffron blocked the inflammatory response and relieved TBI by activating detoxifying genes and inhibiting NLRP3 activation. The effect of saffron on the NLRP3 inflammasome may be SIRT1 and NF-κB dependent in the rmTBI model. Thus, brain injury biomarkers will help in identifying a potential therapeutic target in treating TBI-induced neurodegenerative diseases.


Subject(s)
Crocus/chemistry , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Plant Extracts/chemistry , Plant Extracts/therapeutic use , Animals , Blotting, Western , Inflammasomes/drug effects , Inflammation/drug therapy , Inflammation/metabolism , Male , Mice , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Sirtuin 1/genetics , Sirtuin 1/metabolism
2.
Hum Cell ; 34(1): 152-164, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32979152

ABSTRACT

Deregulating cellular energetics by reprogramming metabolic pathways, including arginine metabolism, is critical for cancer cell onset and survival. Drugs that target the specific metabolic requirements of cancer cells have emerged as promising targeted cancer therapeutics. In this study, we investigate the therapeutic potential of targeting colon cancer cells using arginine deprivation induced by a pegylated cobalt-substituted recombinant human Arginase I [HuArgI (Co)-PEG5000]. Four colon cancer cell lines were tested for their sensitivity to [HuArgI (Co)-PEG5000] as well as for their mechanism of cell death following arginine deprivation. All four cell lines were sensitive to arginine deprivation induced by [HuArgI (Co)-PEG5000]. All cells expressed ASS1 and were rescued from arginine deprivation-induced cytotoxicity by the addition of excess L-citrulline, indicating they are partially auxotrophic for arginine. Mechanistically, cells treated with [HuArgI (Co)-PEG5000] were negative for AnnexinV and lacked caspase activation. Further investigation revealed that arginine deprivation leads to a marked and prolonged activation of autophagy in both Caco-2 and T84 cell lines. Finally, we show that [HuArgI (Co)-PEG5000] causes cell death by sustained activation of autophagy as evidenced by the decrease in cell cytotoxicity upon treatment with chloroquine, an autophagy inhibitor. Altogether, these data demonstrate that colon cancer cells are partially auxotrophic for arginine and sensitive to [HuArgI (Co)-PEG5000]-induced arginine deprivation. They also show that the activation of autophagy does not play protective roles but rather, induces cytotoxicity and leads to cell death.


Subject(s)
Arginase/adverse effects , Arginine/deficiency , Arginine/genetics , Autophagy/genetics , Autophagy/physiology , Cell Death/genetics , Colonic Neoplasms/pathology , Polyethylene Glycols/adverse effects , Arginine/metabolism , Cell Line, Tumor , Humans
3.
Front Cardiovasc Med ; 7: 613271, 2020.
Article in English | MEDLINE | ID: mdl-33344519

ABSTRACT

Atrial fibrillation (AF) and cardiometabolic syndrome (CMS) have been linked to inflammation and fibrosis. However, it is still unknown which inflammatory cytokines contribute to the pathogenesis of AF. Furthermore, cardiometabolic syndrome (CMS) risk factors such as obesity, hypertension, insulin resistance/glucose intolerance are also associated with inflammation and increased level of cytokines and adipokines. We hypothesized that the inflammatory immune response is exacerbated in patients with both AF and CMS compared to either AF or CMS alone. We investigated inflammatory cytokines and fibrotic markers as well as cytokine genetic profiles in patients with lone AF and CMS. CMS, lone AF patients, patients with both lone AF and CMS, and control patients were recruited. Genetic polymorphisms in inflammatory and fibrotic markers were assessed. Serum levels of connective tissue growth factor (CTGF) were tested along with other inflammatory markers including platelet-to-lymphocyte ratio (PLR), monocyte-to-HDL ratio (MHR) in three groups of AF+CMS, AF, and CMS patients. There was a trend in the CTGF levels for statistical significance between the AF and AF+CMS group (P = 0.084). Genotyping showed high percentages of patients in all groups with high secretor genotypes of Interleukin-6 (IL-6) (P = 0.037). Genotyping of IFN-γ and IL-10 at high level showed an increase in expression in the AF + CMS group compared to AF and CMS alone suggesting an imbalance between the inflammatory and anti-inflammatory cytokines which is exacerbated by AF. Serum cytokine inflammatory cytokine levels showed that IL-4, IL-5, IL-10, IL-17F, and IL-22 were significant between the AF, AF+CMS, and CMS patients. Combination of both CMS and AF may be associated with a higher degree of inflammation than what is seen in either CMS or AF alone. Thus, the identification of a biomarker capable of identifying metabolic syndrome associated with disease will help in identification of a therapeutic target in treating this devastating disease.

4.
Clin Sci (Lond) ; 134(11): 1191-1218, 2020 06 12.
Article in English | MEDLINE | ID: mdl-32432676

ABSTRACT

Myocardial infarction (MI) is the leading cause of mortality worldwide. Interleukin (IL)-33 (IL-33) is a cytokine present in most cardiac cells and is secreted on necrosis where it acts as a functional ligand for the ST2 receptor. Although IL-33/ST2 axis is protective against various forms of cardiovascular diseases, some studies suggest potential detrimental roles for IL-33 signaling. The aim of the present study was to examine the effect of IL-33 administration on cardiac function post-MI in mice. MI was induced by coronary artery ligation. Mice were treated with IL-33 (1 µg/day) or vehicle for 4 and 7 days. Functional and molecular changes of the left ventricle (LV) were assessed. Single cell suspensions were obtained from bone marrow, heart, spleen, and peripheral blood to assess the immune cells using flow cytometry at 1, 3, and 7 days post-MI in IL-33 or vehicle-treated animals. The results of the present study suggest that IL-33 is effective in activating a type 2 cytokine milieu in the damaged heart, consistent with reduced early inflammatory and pro-fibrotic response. However, IL-33 administration was associated with worsened cardiac function and adverse cardiac remodeling in the MI mouse model. IL-33 administration increased infarct size, LV hypertrophy, cardiomyocyte death, and overall mortality rate due to cardiac rupture. Moreover, IL-33-treated MI mice displayed a significant myocardial eosinophil infiltration at 7 days post-MI when compared with vehicle-treated MI mice. The present study reveals that although IL-33 administration is associated with a reparative phenotype following MI, it worsens cardiac remodeling and promotes heart failure.


Subject(s)
Eosinophils/metabolism , Heart Ventricles/pathology , Heart Ventricles/physiopathology , Interleukin-33/pharmacology , Myocardial Infarction/physiopathology , Systole/drug effects , Ventricular Remodeling/drug effects , Animals , Apoptosis/drug effects , Cytokines/blood , DNA Fragmentation/drug effects , Diastole/drug effects , Eosinophilia/pathology , Eosinophils/drug effects , Fibrosis , Heart Ventricles/drug effects , Hypertrophy, Left Ventricular/pathology , Inflammation Mediators/blood , Interleukin-33/administration & dosage , Male , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 9/metabolism , Mice, Inbred C57BL , Myocardial Infarction/enzymology , Myocardial Infarction/genetics , Myocardial Infarction/pathology , Neutrophils/drug effects , Neutrophils/metabolism , Phenotype , RNA, Messenger/genetics , RNA, Messenger/metabolism , Splenomegaly/pathology , Up-Regulation/drug effects , Ventricular Remodeling/genetics , bcl-2-Associated X Protein/genetics , bcl-2-Associated X Protein/metabolism
5.
Transl Oncol ; 8(5): 347-357, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26500025

ABSTRACT

In this study, we attempt to target both the urokinase plasminogen activator and the mitogen-activated protein kinase pathway in acute myeloid leukemia (AML) cell lines and primary AML blasts using PrAgU2/LF, a urokinase-activated anthrax lethal toxin. PrAgU2/LF was cytotoxic to five out of nine AML cell lines. Cytotoxicity of PrAgU2/LF appeared to be nonapoptotic and was associated with MAPK activation and urokinase activity because all the PrAgU2/LF-sensitive cell lines showed both uPAR expression and high levels of MEK1/2 phosphorylation. Inhibition of uPAR or desensitization of cells to MEK1/2 inhibition blocked toxicity of PrAgU2/LF, indicating requirement for both uPAR expression and MAPK activation for activity. PrAgU2/LF was also cytotoxic to primary blasts from AML patients, with blasts from four out of five patients showing a cytotoxic response to PrAgU2/LF. Cytotoxicity of primary AML blasts was also dependent on uPAR expression and phos-MEK1/2 levels. CD34(+) bone marrow blasts and peripheral blood mononuclear cells lacked uPAR expression and were resistant to PrAgU2/LF, demonstrating the lack of toxicity to normal hematological cells and, therefore, the tumor selectivity of this approach. Dose escalation in mice revealed that the maximal tolerated dose of PrAgU2/LF is at least 5.7-fold higher than that of the wild-type anthrax lethal toxin, PrAg/LF, further demonstrating the increased safety of this molecule. We have shown, in this study, that PrAgU2/LF is a novel, dual-specific molecule for the selective targeting of AML.

6.
Asian Pac J Cancer Prev ; 16(2): 761-7, 2015.
Article in English | MEDLINE | ID: mdl-25684522

ABSTRACT

BACKGROUND: In this study, we used Daucus carota oil extract (DCOE) to target acute myeloid leukemia (AML) cells. All the AML cell lines tested were sensitive to the extract while peripheral mononuclear cells were not. Analysis of mechanism of cell death showed an increase in cells positive for annexinV and for active caspases, indicating that DCOE induces apoptotic cell death in AML. Inhibition of the MAPK pathway decreased sensitivity of AML cells to DCOE, indicating that cytotoxicity may be dependent on its activity. In conclusion, DCOE induces selective apoptosis in AML cells, possibly through a MAPK-dependent mechanism.


Subject(s)
Apoptosis/drug effects , Cell Cycle/drug effects , Cell Proliferation/drug effects , Daucus carota/chemistry , Leukemia, Myeloid, Acute/drug therapy , Plant Extracts/pharmacology , Plant Oils/pharmacology , Blotting, Western , Flow Cytometry , Humans , Immunoenzyme Techniques , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/pathology , Tumor Cells, Cultured
7.
Leuk Res ; 37(11): 1565-71, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24018014

ABSTRACT

In this study, we target arginine auxotrophy of AML cell lines using human arginase I cobalt-PEG5000. HuArgI(Co)-PEG5000 was cytotoxic to all AML cell lines tested. Mononuclear cells and CD34(+) blasts were not sensitive demonstrating the selectivity of HuArgI(Co)-PEG5000-induced arginine deprivation. Addition of L-citrulline led to the rescue of five cell lines. The four cell lines that were not rescued by L-citrulline did not express argininosuccinate synthetase-1, indicating complete arginine auxotrophy. Inhibition of autophagy increased cell sensitivity to HuArgI(Co)-PEG5000 demonstrating the protective role of autophagy following arginine deprivation. We have shown that AML can be selectively targeted using HuArgI(Co)-PEG5000-induced arginine depletion.


Subject(s)
Apoptosis/drug effects , Arginase/metabolism , Arginine/metabolism , Autophagy , Leukemia, Myeloid, Acute/pathology , Polyethylene Glycols/chemistry , Recombinant Proteins/metabolism , Argininosuccinate Synthase , Blotting, Western , Cell Cycle/drug effects , Cell Proliferation/drug effects , Flow Cytometry , Humans , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/metabolism , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...