Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 9928, 2024 04 30.
Article in English | MEDLINE | ID: mdl-38688976

ABSTRACT

SQUAMOSA promoter binding-like proteins (SPLs) are important transcription factors that influence growth phase transition and reproduction in plants. SPLs are targeted by miR156 but the SPL/miR156 module is completely unknown in oat. We identified 28 oat SPL genes (AsSPLs) distributed across all 21 oat chromosomes except for 4C and 6D. The oat- SPL gene family represented six of eight SPL phylogenetic groups, with no AsSPLs in groups 3 and 7. A novel oat miR156 (AsmiR156) family with 21 precursors divided into 7 groups was characterized. A total of 16 AsSPLs were found to be targeted by AsmiR156. Intriguingly, AsSPL3s showed high transcript abundance during early inflorescence (GS-54), as compared to the lower abundance of AsmiR156, indicating their role in reproductive development. Unravelling the SPL/miR156 regulatory hub and alterations in expression patterns of AsSPLs could provide an essential toolbox for genetic improvement in the cultivated oat.


Subject(s)
Avena , Gene Expression Regulation, Plant , MicroRNAs , Plant Proteins , MicroRNAs/genetics , MicroRNAs/metabolism , Avena/genetics , Avena/metabolism , Avena/growth & development , Plant Proteins/genetics , Plant Proteins/metabolism , Phylogeny , Transcription Factors/metabolism , Transcription Factors/genetics , Promoter Regions, Genetic , Chromosomes, Plant/genetics , Gene Expression Profiling
2.
Theor Appl Genet ; 136(3): 53, 2023 Mar 13.
Article in English | MEDLINE | ID: mdl-36913008

ABSTRACT

KEY MESSAGE: Three independent experiments with different genetic backgrounds mapped the resistance gene Pm7 in the oat genome to the distal part of the long arm of chromosome 5D. Resistance of oat to Blumeria graminis DC. f. sp. avenae is an important breeding goal in Central and Western Europe. In this study, the position of the effective and widely used resistance gene Pm7 in the oat genome was determined based on three independent experiments with different genetic backgrounds: genome-wide association mapping in a diverse set of inbred oat lines and binary phenotype mapping in two bi-parental populations. Powdery mildew resistance was assessed in the field as well as by detached leaf tests in the laboratory. Genotyping-by-sequencing was conducted to establish comprehensive genetic fingerprints for subsequent genetic mapping experiments. All three mapping approaches located the gene to the distal part of the long arm of chromosome 5D in the hexaploid oat genome sequences of OT3098 and 'Sang.' Markers from this region were homologous to a region of chromosome 2Ce of the C-genome species, Avena eriantha, the donor of Pm7, which appears to be the ancestral source of a translocated region on the hexaploid chromosome 5D.


Subject(s)
Avena , Genome-Wide Association Study , Avena/genetics , Genetic Markers , Disease Resistance/genetics , Triticum/genetics , Genes, Plant , Plant Breeding , Chromosomes , Plant Diseases/genetics
3.
Commun Biol ; 5(1): 474, 2022 05 18.
Article in English | MEDLINE | ID: mdl-35585176

ABSTRACT

Oat (Avena sativa L.) is an important and nutritious cereal crop, and there is a growing need to identify genes that contribute to improved oat varieties. Here we utilize a newly sequenced and annotated oat reference genome to locate and characterize quantitative trait loci (QTLs) affecting agronomic and grain-quality traits in five oat populations. We find strong and significant associations between the positions of candidate genes and QTL that affect heading date, as well as those that influence the concentrations of oil and ß-glucan in the grain. We examine genome-wide recombination profiles to confirm the presence of a large, unbalanced translocation from chromosome 1 C to 1 A, and a possible inversion on chromosome 7D. Such chromosome rearrangements appear to be common in oat, where they cause pseudo-linkage and recombination suppression, affecting the segregation, localization, and deployment of QTLs in breeding programs.


Subject(s)
Avena , Plant Breeding , Avena/genetics , Edible Grain/genetics , Genetic Linkage , Phenotype , Quantitative Trait Loci
4.
Nature ; 606(7912): 113-119, 2022 06.
Article in English | MEDLINE | ID: mdl-35585233

ABSTRACT

Cultivated oat (Avena sativa L.) is an allohexaploid (AACCDD, 2n = 6x = 42) thought to have been domesticated more than 3,000 years ago while growing as a weed in wheat, emmer and barley fields in Anatolia1,2. Oat has a low carbon footprint, substantial health benefits and the potential to replace animal-based food products. However, the lack of a fully annotated reference genome has hampered efforts to deconvolute its complex evolutionary history and functional gene dynamics. Here we present a high-quality reference genome of A. sativa and close relatives of its diploid (Avena longiglumis, AA, 2n = 14) and tetraploid (Avena insularis, CCDD, 2n = 4x = 28) progenitors. We reveal the mosaic structure of the oat genome, trace large-scale genomic reorganizations in the polyploidization history of oat and illustrate a breeding barrier associated with the genome architecture of oat. We showcase detailed analyses of gene families implicated in human health and nutrition, which adds to the evidence supporting oat safety in gluten-free diets, and we perform mapping-by-sequencing of an agronomic trait related to water-use efficiency. This resource for the Avena genus will help to leverage knowledge from other cereal genomes, improve understanding of basic oat biology and accelerate genomics-assisted breeding and reanalysis of quantitative trait studies.


Subject(s)
Avena , Edible Grain , Genome, Plant , Avena/genetics , Diploidy , Edible Grain/genetics , Genome, Plant/genetics , Mosaicism , Plant Breeding , Tetraploidy
5.
Theor Appl Genet ; 135(4): 1307-1318, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35113191

ABSTRACT

KEY MESSAGE: Comparative sequence analysis was used to design a SNP marker that aided in the identification of new sources of oat stem rust resistance. New races of Puccinia graminis f. sp. avenae (Pga) threaten global oat production. An A. strigosa accession known to carry the broadly effective oat stem rust resistance gene, Pg6, was crossed with two susceptible A. strigosa accessions to generate 198 F2:3 families and 190 F5:6 RILs. The RIL population was used to determine that Pg6 was a single dominant gene located between 475 and 491 Mbp on diploid chromosome AA2 of the A. atlantica genome. This region was further refined by identifying SNPs associated with Pg6 resistance in a panel of previously sequenced A-genome accessions. Twenty-four markers were developed from SNPs that showed perfect association between the Pg6 phenotype and 11 sequenced Avena diploid accessions. These markers were validated in the RILs and F2:3 families, and the markers most closely linked with resistance were tested in a diverse panel of 253 accessions consisting of oat stem rust differentials, all available diploid Avena spp. accessions, and 41 A. vaviloviana accessions from the National Small Grains Collection. One SNP marker located at 483, 439, 497 bp on AA2, designated as AA2_483439497, was perfectly associated with the Pg6 phenotype in Avena strigosa diploids and was within several Kb of a resistance gene analog, RPP13. The marker results and seedling testing against Pga races DBD, KBD, TJS, and TQL enabled the postulation of Pg6 and potential new sources of resistance in the Avena panel. These results will be used to infer Pg6 presence in other germplasm collections and breeding programs and can assist with introgression, gene pyramiding, and cloning of Pg6.


Subject(s)
Avena , Basidiomycota , Avena/genetics , Disease Resistance/genetics , Plant Breeding , Plant Diseases/genetics , Polymorphism, Single Nucleotide , Puccinia , Sequence Analysis
6.
G3 (Bethesda) ; 11(4)2021 04 15.
Article in English | MEDLINE | ID: mdl-33856017

ABSTRACT

Barley (Hordeum vulgare L.) is one of the most important global crops. The six-row barley cultivar Morex reference genome has been used by the barley research community worldwide. However, this reference genome can have limitations when used for genomic and genetic diversity analysis studies, gene discovery, and marker development when working in two-row germplasm that is more common to Canadian barley. Here we assembled, for the first time, the genome sequence of a Canadian two-row malting barley, cultivar AAC Synergy. We applied deep Illumina paired-end reads, long mate-pair reads, PacBio sequences, 10X chromium linked read libraries, and chromosome conformation capture sequencing (Hi-C) to generate a contiguous assembly. The genome assembled from super-scaffolds had a size of 4.85 Gb, N50 of 2.32 Mb, and an estimated 93.9% of complete genes from a plant database (BUSCO, benchmarking universal single-copy orthologous genes). After removal of small scaffolds (< 300 Kb), the assembly was arranged into pseudomolecules of 4.14 Gb in size with seven chromosomes plus unanchored scaffolds. The completeness and annotation of the assembly were assessed by comparing it with the updated version of six-row Morex and recently released two-row Golden Promise genome assemblies.


Subject(s)
Hordeum , Canada , Chromosomes , Genome , Genomics , Hordeum/genetics
7.
Mol Plant ; 14(6): 874-887, 2021 06 07.
Article in English | MEDLINE | ID: mdl-33713844

ABSTRACT

Identifying mechanisms and pathways involved in gene-environment interplay and phenotypic plasticity is a long-standing challenge. It is highly desirable to establish an integrated framework with an environmental dimension for complex trait dissection and prediction. A critical step is to identify an environmental index that is both biologically relevant and estimable for new environments. With extensive field-observed complex traits, environmental profiles, and genome-wide single nucleotide polymorphisms for three major crops (maize, wheat, and oat), we demonstrated that identifying such an environmental index (i.e., a combination of environmental parameter and growth window) enables genome-wide association studies and genomic selection of complex traits to be conducted with an explicit environmental dimension. Interestingly, genes identified for two reaction-norm parameters (i.e., intercept and slope) derived from flowering time values along the environmental index were less colocalized for a diverse maize panel than for wheat and oat breeding panels, agreeing with the different diversity levels and genetic constitutions of the panels. In addition, we showcased the usefulness of this framework for systematically forecasting the performance of diverse germplasm panels in new environments. This general framework and the companion CERIS-JGRA analytical package should facilitate biologically informed dissection of complex traits, enhanced performance prediction in breeding for future climates, and coordinated efforts to enrich our understanding of mechanisms underlying phenotypic variation.


Subject(s)
Avena/genetics , Gene-Environment Interaction , Triticum/genetics , Zea mays/genetics , Avena/growth & development , Gene Expression Regulation, Plant , Genome-Wide Association Study , Phenotype , Plant Breeding , Polymorphism, Single Nucleotide , Triticum/growth & development , Zea mays/growth & development
8.
Phytopathology ; 110(10): 1721-1726, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32915112

ABSTRACT

Stem rust is an important disease of cultivated oat (Avena sativa) caused by Puccinia graminis f. sp. avenae. In North America, host resistance is the primary strategy to control this disease and is conferred by a relatively small number of resistance genes. Pg2 is a widely deployed stem rust resistance gene that originates from cultivated oat. Oat breeders wish to develop cultivars with multiple Pg genes to slow the breakdown of single gene resistance, and often require DNA markers suited for marker-assisted selection. Our objectives were to (i) construct high density linkage maps for a major oat stem rust resistance gene using three biparental mapping populations, (ii) develop Kompetitive allele-specific PCR (KASP) assays for Pg2-linked single-nucleotide polymorphisms (SNPs), and (iii) test the prediction accuracy of those markers with a diverse panel of spring oat lines and cultivars. Genotyping-by-sequencing SNP markers linked to Pg2 were identified in an AC Morgan/CDC Morrison recombinant inbred line (RIL) population. Pg2-linked SNPs were then analyzed in an AC Morgan/RL815 F2 population and an AC Morgan/CDC Dancer RIL population. Linkage analysis identified a common location for Pg2 in all three populations on linkage group Mrg20 of the oat consensus genetic map. The most predictive markers were identified and converted to KASP assays for use in oat breeding programs. When used in combination, the KASP assays for the SNP loci avgbs2_126549.1.46 and avgbs_cluster_23819.1.27 were highly predictive of Pg2 status in panel of 54 oat breeding lines and cultivars.


Subject(s)
Avena/genetics , Basidiomycota , Chromosome Mapping , Disease Resistance/genetics , Genetic Linkage , Humans , North America , Plant Diseases , Polymorphism, Single Nucleotide/genetics
9.
Theor Appl Genet ; 133(12): 3365-3380, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32888041

ABSTRACT

KEY MESSAGE: Genotyping-by-sequencing (GBS)-derived molecular markers reveal the distinct genetic population structure and relatively narrow genetic diversity of Chinese hulless oat landraces. Four markers linked to the naked grain gene (N1) are identified by genome-wide association study (GWAS). Interest in hulless oat (Avena sativa ssp. nuda), a variant of common oat (A. sativa) domesticated in Western Asia, has increased in recent years due to its free-threshing attribute and its domestication history. However, the genetic diversity and population structure of hulless oat, as well as the genetic mechanism of hullessness, are poorly understood. In this study, the genetic diversity and population structure of a worldwide sample of 805 oat lines including 186 hulless oats were investigated using genotyping-by-sequencing. Population structure analyses showed a strong genetic differentiation between hulless landraces vs other oat lines, including the modern hulless cultivars. The distinct subpopulation stratification of hulless landraces and their low genetic diversity suggests that a domestication bottleneck existed in hulless landraces. Additionally, low genetic diversity within European oats and strong differentiation between the spring oats and southern origin oat lines revealed by previous studies were also observed in this study. Genomic regions contributing to these genetic differentiations suggest that genetic loci related to growth habit and stress resistance may have been under intense selection, rather than the hulless-related genomic regions. Genome-wide association analysis detected four markers that were highly associated with hullessness. Three of these were mapped on linkage group Mrg21 at a genetic position between 195.7 and 212.1 cM, providing robust evidence that the dominant N1 locus located on Mrg21 is the single major factor controlling this trait.


Subject(s)
Avena/genetics , Genetic Markers , Genetics, Population , Genome, Plant , Polymorphism, Single Nucleotide , Seeds/genetics , China , Chromosome Mapping , Genetic Linkage , Genome-Wide Association Study , Humans , Linkage Disequilibrium , Phenotype
10.
Plant Dis ; 104(5): 1507-1513, 2020 May.
Article in English | MEDLINE | ID: mdl-32150502

ABSTRACT

Crown rust, caused by Puccinia coronata f. sp. avenae Eriks. (Pca), is among the most important oat diseases resulting in significant yield losses in many growing regions. A gene-for-gene interaction is well established in this pathosystem and has been exploited by oat breeders to control crown rust. Pc39 is a seedling crown rust resistance gene that has been widely deployed in North American oat breeding. DNA markers are desired to accurately predict the specific Pc genes present in breeding germplasm. The objectives of the study were as follows: (i) to map Pc39 in two recombinant inbred line (RIL) populations (AC Assiniboia/MN841801 and AC Medallion/MN841801) and (ii) to identify single nucleotide polymorphism (SNP) markers for postulation of Pc39 in oat germplasm. Pc39 was mapped to a linkage group consisting of 16 SNP markers, which placed the gene on linkage group Mrg11 (chromosome 1C) of the oat consensus map. Pc39 cosegregated with SNP marker GMI_ES01_c12570_390 in the AC Assiniboia/MN841801 RIL population and was flanked by the SNP markers avgbs_126086.1.41 and GMI_ES15_c276_702, with genetic distances of 1.7 and 0.3 cM, respectively. In the AC Medallion/MN841801 RIL population, similar results were obtained but the genetic distances of the flanking markers were 0.4 and 0.4 cM, respectively. Kompetitive Allele-Specific PCR assays were successfully designed for Pc39-linked SNP loci. Two SNP loci defined a haplotype that accurately predicted Pc39 status in a diverse panel of oat germplasm and will be useful for marker-assisted selection in oat breeding.


Subject(s)
Avena , Basidiomycota , Genetic Linkage , Plant Diseases , Polymorphism, Single Nucleotide
11.
Theor Appl Genet ; 133(2): 653-664, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31802146

ABSTRACT

We adapted and tested a Rapture assay as an enhancement of genotyping-by-sequencing (GBS) in oat (Avena sativa). This assay was based on an additional bait-based capture of specific DNA fragments representing approximately 10,000 loci within the enzyme-based complexity reduction provided by GBS. By increasing the specificity of GBS to include only those fragments that provided effective polymorphic markers, it was possible to achieve deeper sequence coverage of target markers, while simultaneously sequencing a greater number of samples on a single unit of next-generation sequencing. The Rapture assay consistently out-performed the GBS assay when filtering markers at 80% completeness or greater, even though the total number of reads per sample was only 25% that of GBS. The reduced sequencing cost per sample for Rapture more than compensated for the increased cost of the capture reaction. Thus, Rapture generated a more repeatable set of marker data at a cost per sample that was approximately 40% less than GBS. Additional advantages of Rapture included accurate identification of heterozygotes, and the possibility to increase the depth or length of sequence reads with less impact on the cost per sample. We tested Rapture for genomic selection and diversity analysis and concluded that it is an effective alternative to GBS or other SNP assays. We recommend the use of Rapture in oat and the development of similar assays in other crops with large complex genomes.


Subject(s)
Avena/genetics , Crops, Agricultural/genetics , Genotyping Techniques/methods , Alleles , Data Accuracy , Genome, Plant , Genomics , Genotype , Heterozygote , High-Throughput Nucleotide Sequencing , Plant Breeding , Polymorphism, Single Nucleotide , Sequence Analysis, DNA
12.
Theor Appl Genet ; 133(1): 259-270, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31637459

ABSTRACT

KEY MESSAGE: The widely deployed, oat stem rust resistance gene Pg13 was mapped by linkage analysis and association mapping, and KASP markers were developed for marker-assisted selection in breeding programs. Pg13 is one of the most extensively deployed stem rust resistance genes in North American oat cultivars. Identification of markers tightly linked to this gene will be useful for routine marker-assisted selection, identification of gene pyramids, and retention of the gene in backcrosses and three-way crosses. To this end, high-density linkage maps were constructed in four bi-parental mapping populations using SNP markers identified from 6K oat Infinium iSelect and genotyping-by-sequencing platforms. Additionally, genome-wide associations were identified using two sets of association panels consisting of diverse elite oat lines in one set and landrace accessions in the other. The results showed that Pg13 was located at approximately 67.7 cM on linkage group Mrg18 of the consensus genetic map. The gene co-segregated with the 7C-17A translocation breakpoint and with crown rust resistance gene Pc91. Co-segregating markers with the best prediction accuracy were identified at 67.7-68.5 cM on Mrg18. KASP assays were developed for linked SNP loci for use in oat breeding.


Subject(s)
Avena/genetics , Avena/microbiology , Basidiomycota/physiology , Chromosome Mapping , Disease Resistance/genetics , Genes, Plant , Plant Diseases/genetics , Plant Stems/microbiology , Chromosome Segregation/genetics , Genetic Association Studies , Genetic Markers , Haplotypes/genetics , Plant Diseases/microbiology , Plant Stems/genetics , Polymorphism, Single Nucleotide/genetics
13.
Sci Rep ; 9(1): 19657, 2019 12 23.
Article in English | MEDLINE | ID: mdl-31873115

ABSTRACT

Key message: Several AC Proteus derived genomic regions (QTLs, SNPs) have been identified which may prove useful for further development of high yielding high protein cultivars and allele-specific marker developments. High seed protein content is a trait which is typically difficult to introgress into soybean without an accompanying reduction in seed yield. In a previous study, 'AC Proteus' was used as a high protein source and was found to produce populations that did not exhibit the typical association between high protein and low yield. Five high x low protein RIL populations and a high x high protein RIL population were evaluated by either quantitative trait locus (QTL) analysis or bulk segregant analyses (BSA) following phenotyping in the field. QTL analysis in one population using SSR, DArT and DArTseq markers found two QTLs for seed protein content on chromosomes 15 and 20. The BSA analyses suggested multiple genomic regions are involved with high protein content across the five populations, including the two previously mentioned QTLs. In an alternative approach to identify high protein genes, pedigree analysis identified SNPs for which the allele associated with high protein was retained in seven high protein descendants of AC Proteus on chromosomes 2, 17 and 18. Aside from the two identified QTLs (five genomic regions in total considering the two with highly elevated test statistic, but below the statistical threshold and the one with epistatic interactions) which were some distance from Meta-QTL regions and which were also supported by our BSA analysis within five populations. These high protein regions may prove useful for further development of high yielding high protein cultivars.


Subject(s)
Chromosomes, Plant/genetics , Glycine max/genetics , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Seeds/genetics , Soybean Proteins/genetics
14.
BMC Biol ; 17(1): 92, 2019 11 22.
Article in English | MEDLINE | ID: mdl-31757219

ABSTRACT

BACKGROUND: Cultivated hexaploid oat (Common oat; Avena sativa) has held a significant place within the global crop community for centuries; although its cultivation has decreased over the past century, its nutritional benefits have garnered increased interest for human consumption. We report the development of fully annotated, chromosome-scale assemblies for the extant progenitor species of the As- and Cp-subgenomes, Avena atlantica and Avena eriantha respectively. The diploid Avena species serve as important genetic resources for improving common oat's adaptive and food quality characteristics. RESULTS: The A. atlantica and A. eriantha genome assemblies span 3.69 and 3.78 Gb with an N50 of 513 and 535 Mb, respectively. Annotation of the genomes, using sequenced transcriptomes, identified ~ 50,000 gene models in each species-including 2965 resistance gene analogs across both species. Analysis of these assemblies classified much of each genome as repetitive sequence (~ 83%), including species-specific, centromeric-specific, and telomeric-specific repeats. LTR retrotransposons make up most of the classified elements. Genome-wide syntenic comparisons with other members of the Pooideae revealed orthologous relationships, while comparisons with genetic maps from common oat clarified subgenome origins for each of the 21 hexaploid linkage groups. The utility of the diploid genomes was demonstrated by identifying putative candidate genes for flowering time (HD3A) and crown rust resistance (Pc91). We also investigate the phylogenetic relationships among other A- and C-genome Avena species. CONCLUSIONS: The genomes we report here are the first chromosome-scale assemblies for the tribe Poeae, subtribe Aveninae. Our analyses provide important insight into the evolution and complexity of common hexaploid oat, including subgenome origin, homoeologous relationships, and major intra- and intergenomic rearrangements. They also provide the annotation framework needed to accelerate gene discovery and plant breeding.


Subject(s)
Avena/genetics , Chromosomes, Plant/genetics , Genome, Plant , Diploidy , Genetic Linkage , Molecular Sequence Annotation , Synteny
15.
Sci Rep ; 9(1): 12298, 2019 08 23.
Article in English | MEDLINE | ID: mdl-31444367

ABSTRACT

The genus Avena (oats) contains diploid, tetraploid and hexaploid species that evolved through hybridization and polyploidization. Four genome types (named A through D) are generally recognized. We used GBS markers to construct linkage maps of A genome diploid (Avena strigosa x A. wiestii, 2n = 14), and AB genome tetraploid (A. barbata 2n = 28) oats. These maps greatly improve coverage from older marker systems. Seven linkage groups in the tetraploid showed much stronger homology and synteny with the A genome diploids than did the other seven, implying an allopolyploid hybrid origin of A. barbata from distinct A and B genome diploid ancestors. Inferred homeologies within A. barbata revealed that the A and B genomes are differentiated by several translocations between chromosomes within each subgenome. However, no translocation exchanges were observed between A and B genomes. Comparison to a consensus map of ACD hexaploid A. sativa (2n = 42) revealed that the A and D genomes of A. sativa show parallel rearrangements when compared to the A genomes of the diploids and tetraploids. While intergenomic translocations are well known in polyploid Avena, our results are most parsimoniously explained if translocations also occurred in the A, B and D genome diploid ancestors of polyploid Avena.


Subject(s)
Avena/genetics , Chromosome Mapping , Chromosomes, Plant/genetics , Diploidy , Gene Rearrangement/genetics , Phylogeny , Polyploidy , Tetraploidy , Genome, Plant
16.
Plant Biotechnol J ; 16(8): 1452-1463, 2018 08.
Article in English | MEDLINE | ID: mdl-29345800

ABSTRACT

In a de novo genotyping-by-sequencing (GBS) analysis of short, 64-base tag-level haplotypes in 4657 accessions of cultivated oat, we discovered 164741 tag-level (TL) genetic variants containing 241224 SNPs. From this, the marker density of an oat consensus map was increased by the addition of more than 70000 loci. The mapped TL genotypes of a 635-line diversity panel were used to infer chromosome-level (CL) haplotype maps. These maps revealed differences in the number and size of haplotype blocks, as well as differences in haplotype diversity between chromosomes and subsets of the diversity panel. We then explored potential benefits of SNP vs. TL vs. CL GBS variants for mapping, high-resolution genome analysis and genomic selection in oats. A combined genome-wide association study (GWAS) of heading date from multiple locations using both TL haplotypes and individual SNP markers identified 184 significant associations. A comparative GWAS using TL haplotypes, CL haplotype blocks and their combinations demonstrated the superiority of using TL haplotype markers. Using a principal component-based genome-wide scan, genomic regions containing signatures of selection were identified. These regions may contain genes that are responsible for the local adaptation of oats to Northern American conditions. Genomic selection for heading date using TL haplotypes or SNP markers gave comparable and promising prediction accuracies of up to r = 0.74. Genomic selection carried out in an independent calibration and test population for heading date gave promising prediction accuracies that ranged between r = 0.42 and 0.67. In conclusion, TL haplotype GBS-derived markers facilitate genome analysis and genomic selection in oat.


Subject(s)
Avena/genetics , Genome, Plant/genetics , Haplotypes/genetics , Genome-Wide Association Study , Genotype , Linkage Disequilibrium/genetics
17.
Plant Genome ; 9(2)2016 07.
Article in English | MEDLINE | ID: mdl-27898818

ABSTRACT

Hexaploid oat ( L., 2 = 6 = 42) is a member of the Poaceae family and has a large genome (∼12.5 Gb) containing 21 chromosome pairs from three ancestral genomes. Physical rearrangements among parental genomes have hindered the development of linkage maps in this species. The objective of this work was to develop a single high-density consensus linkage map that is representative of the majority of commonly grown oat varieties. Data from a cDNA-derived single-nucleotide polymorphism (SNP) array and genotyping-by-sequencing (GBS) were collected from the progeny of 12 biparental recombinant inbred line populations derived from 19 parents representing oat germplasm cultivated primarily in North America. Linkage groups from all mapping populations were compared to identify 21 clusters of conserved collinearity. Linkage groups within each cluster were then merged into 21 consensus chromosomes, generating a framework consensus map of 7202 markers spanning 2843 cM. An additional 9678 markers were placed on this map with a lower degree of certainty. Assignment to physical chromosomes with high confidence was made for nine chromosomes. Comparison of homeologous regions among oat chromosomes and matches to orthologous regions of rice ( L.) reveal that the hexaploid oat genome has been highly rearranged relative to its ancestral diploid genomes as a result of frequent translocations among chromosomes. Heterogeneous chromosome rearrangements among populations were also evident, probably accounting for the failure of some linkage groups to match the consensus. This work contributes to a further understanding of the organization and evolution of hexaploid grass genomes.


Subject(s)
Avena/genetics , Genome, Plant/genetics , Synteny , Chromosome Mapping , Chromosomes, Plant/genetics , Genetic Linkage , Genotype , North America , Polymorphism, Single Nucleotide , Polyploidy
18.
Plant Genome ; 9(2)2016 07.
Article in English | MEDLINE | ID: mdl-27898836

ABSTRACT

Six hundred thirty five oat ( L.) lines and 4561 single-nucleotide polymorphism (SNP) loci were used to evaluate population structure, linkage disequilibrium (LD), and genotype-phenotype association with heading date. The first five principal components (PCs) accounted for 25.3% of genetic variation. Neither the eigenvalues of the first 25 PCs nor the cross-validation errors from = 1 to 20 model-based analyses suggested a structured population. However, the PC and = 2 model-based analyses supported clustering of lines on spring oat vs. southern United States origin, accounting for 16% of genetic variation ( < 0.0001). Single-locus -statistic () in the highest 1% of the distribution suggested linkage groups that may be differentiated between the two population subgroups. Population structure and kinship-corrected LD of = 0.10 was observed at an average pairwise distance of 0.44 cM (0.71 and 2.64 cM within spring and southern oat, respectively). On most linkage groups LD decay was slower within southern lines than within the spring lines. A notable exception was found on linkage group Mrg28, where LD decay was substantially slower in the spring subpopulation. It is speculated that this may be caused by a heterogeneous translocation event on this chromosome. Association with heading date was most consistent across location-years on linkage groups Mrg02, Mrg12, Mrg13, and Mrg24.


Subject(s)
Adaptation, Physiological/genetics , Avena/genetics , Metagenomics , Genetic Association Studies , Genetic Variation , Linkage Disequilibrium , Polymorphism, Single Nucleotide/genetics
19.
Theor Appl Genet ; 129(11): 2133-2149, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27522358

ABSTRACT

KEY MESSAGE: Genome analysis of 27 oat species identifies ancestral groups, delineates the D genome, and identifies ancestral origin of 21 mapped chromosomes in hexaploid oat. We investigated genomic relationships among 27 species of the genus Avena using high-density genetic markers revealed by genotyping-by-sequencing (GBS). Two methods of GBS analysis were used: one based on tag-level haplotypes that were previously mapped in cultivated hexaploid oat (A. sativa), and one intended to sample and enumerate tag-level haplotypes originating from all species under investigation. Qualitatively, both methods gave similar predictions regarding the clustering of species and shared ancestral genomes. Furthermore, results were consistent with previous phylogenies of the genus obtained with conventional approaches, supporting the robustness of whole genome GBS analysis. Evidence is presented to justify the final and definitive classification of the tetraploids A. insularis, A. maroccana (=A. magna), and A. murphyi as containing D-plus-C genomes, and not A-plus-C genomes, as is most often specified in past literature. Through electronic painting of the 21 chromosome representations in the hexaploid oat consensus map, we show how the relative frequency of matches between mapped hexaploid-derived haplotypes and AC (DC)-genome tetraploids vs. A- and C-genome diploids can accurately reveal the genome origin of all hexaploid chromosomes, including the approximate positions of inter-genome translocations. Evidence is provided that supports the continued classification of a diverged B genome in AB tetraploids, and it is confirmed that no extant A-genome diploids, including A. canariensis, are similar enough to the D genome of tetraploid and hexaploid oat to warrant consideration as a D-genome diploid.


Subject(s)
Avena/genetics , Chromosomes, Plant/genetics , Genome, Plant , Chromosome Painting , DNA, Plant/genetics , Genetic Markers , Genotyping Techniques , Haplotypes , Polyploidy
SELECTION OF CITATIONS
SEARCH DETAIL
...