Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
2.
Pathogens ; 9(5)2020 May 21.
Article in English | MEDLINE | ID: mdl-32455702

ABSTRACT

Both Strongyloides stercoralis and hookworms are common soil-transmitted helminths in remote Australian communities. In addition to infecting humans, S. stercoralis and some species of hookworms infect canids and therefore present both environmental and zoonotic sources of transmission to humans. Currently, there is limited information available on the prevalence of hookworms and S. stercoralis infections in dogs living in communities across the Northern Territory in Australia. In this study, 274 dog faecal samples and 11 faecal samples of unknown origin were collected from the environment and directly from animals across 27 remote communities in Northern and Central Australia. Samples were examined using real-time polymerase chain reaction (PCR) analysis for the presence of S. stercoralis and four hookworm species: Ancylostoma caninum, Ancylostoma ceylanicum, Ancylostoma braziliense and Uncinaria stenocephala. The prevalence of S. stercoralis in dogs was found to be 21.9% (60/274). A. caninum was the only hookworm detected in the dog samples, with a prevalence of 31.4% (86/274). This study provides an insight into the prevalence of S. stercoralis and hookworms in dogs and informs future intervention and prevention strategies aimed at controlling these parasites in both dogs and humans. A "One Health" approach is crucial for the prevention of these diseases in Australia.

3.
PLoS Negl Trop Dis ; 13(8): e0007241, 2019 08.
Article in English | MEDLINE | ID: mdl-31430282

ABSTRACT

Strongyloidiasis is caused by the human infective nematodes Strongyloides stercoralis, Strongyloides fuelleborni subsp. fuelleborni and Strongyloides fuelleborni subsp. kellyi. The zoonotic potential of S. stercoralis and the potential role of dogs in the maintenance of strongyloidiasis transmission has been a topic of interest and discussion for many years. In Australia, strongyloidiasis is prevalent in remote socioeconomically disadvantaged communities in the north of the continent. Being an isolated continent that has been separated from other regions for a long geological period, description of diversity of Australian Strongyloides genotypes adds to our understanding of the genetic diversity within the genus. Using PCR and amplicon sequencing (Illumina sequencing technology), we sequenced the Strongyloides SSU rDNA hyper-variable I and hyper-variable IV regions using Strongyloides-specific primers, and a fragment of the mtDNA cox1 gene using primers that are broadly specific for Strongyloides sp. and hookworms. These loci were amplified from DNA extracted from Australian human and dog faeces, and one human sputum sample. Using this approach, we confirm for the first time that potentially zoonotic S. stercoralis populations are present in Australia, suggesting that dogs represent a potential reservoir of human strongyloidiasis in remote Australian communities.


Subject(s)
Genotype , Strongyloides/genetics , Strongyloides/isolation & purification , Strongyloidiasis/physiopathology , Strongyloidiasis/veterinary , Ancylostomatoidea , Animals , Australia/epidemiology , Cyclooxygenase 1 , DNA, Mitochondrial/genetics , DNA, Ribosomal/genetics , Dog Diseases/epidemiology , Dog Diseases/parasitology , Dogs , Feces/parasitology , High-Throughput Nucleotide Sequencing , Humans , Strongyloides/classification , Strongyloidiasis/epidemiology , Strongyloidiasis/transmission , Surveys and Questionnaires
4.
Trop Med Infect Dis ; 3(2)2018 Jun 05.
Article in English | MEDLINE | ID: mdl-30274457

ABSTRACT

Strongyloidiasis is an infection caused by the helminth, Strongyloides stercoralis. Up to 370 million people are infected with the parasite globally, and it has remained endemic in the Indigenous Australian population for many decades. Strongyloidiasis has been also reported in other Australian populations. Ignorance of this disease has caused unnecessary costs to the government health system, and been detrimental to the Australian people's health. This manuscript addresses the 12 criteria required for a disease to be included in the Australian National Notifiable Disease List (NNDL) under the National Health Security Act 2007 (Commonwealth). There are six main arguments that provide compelling justification for strongyloidiasis to be made nationally notifiable and added to the Australian NNDL. These are: The disease is important to Indigenous health, and closing the health inequity gap between Indigenous and non-Indigenous Australians is a priority; a public health response is required to detect cases of strongyloidiasis and to establish the true incidence and prevalence of the disease; there is no alternative national surveillance system to gather data on the disease; there are preventive measures with high efficacy and low side effects; data collection is feasible as cases are definable by microscopy, PCR, or serological diagnostics; and achievement of the Sustainable Development Goal (SDG) # 6 on clean water and sanitation.

6.
Article in English | MEDLINE | ID: mdl-28598404

ABSTRACT

Strongyloides stercoralis is a gastrointestinal parasitic nematode with a life cycle that includes free-living and parasitic forms. For both clinical (diagnostic) and environmental evaluation, it is important that we can detect Strongyloides spp. in both human and non-human fecal samples. Real-time PCR is the most feasible method for detecting the parasite in both clinical and environmental samples that have been preserved. However, one of the biggest challenges with PCR detection is DNA degradation during the postage time from rural and remote areas to the laboratory. This study included a laboratory assessment and field validation of DESS (dimethyl sulfoxide, disodium EDTA, and saturated NaCl) preservation of Strongyloides spp. DNA in fecal samples. The laboratory study investigated the capacity of 1:1 and 1:3 sample to DESS ratios to preserve Strongyloides ratti in spike canine feces. It was found that both ratios of DESS significantly prevented DNA degradation compared to the untreated sample. This method was then validated by applying it to the field-collected canine feces and detecting Strongyloides DNA using PCR. A total of 37 canine feces samples were collected and preserved in the 1:3 ratio (sample: DESS) and of these, 17 were positive for Strongyloides spp. The study shows that both 1:1 and 1:3 sample to DESS ratios were able to preserve the Strongyloides spp. DNA in canine feces samples stored at room temperature for up to 56 days. This DESS preservation method presents the most applicable and feasible method for the Strongyloides DNA preservation in field-collected feces.


Subject(s)
DNA, Helminth/isolation & purification , Dog Diseases/parasitology , Feces/parasitology , Specimen Handling/veterinary , Strongyloides/isolation & purification , Strongyloidiasis/veterinary , Animals , DNA, Helminth/chemistry , Dimethyl Sulfoxide/chemistry , Dog Diseases/diagnosis , Dogs , Edetic Acid/chemistry , Humans , Real-Time Polymerase Chain Reaction/methods , Reproducibility of Results , Sodium Chloride/chemistry , Specimen Handling/methods , Strongyloidiasis/diagnosis , Strongyloidiasis/parasitology
7.
Pathogens ; 5(4)2016 Sep 30.
Article in English | MEDLINE | ID: mdl-27706031

ABSTRACT

Strongyloidiasis is an underestimated disease caused by the soil-transmitted parasite of the genus Strongyloides. It is prevalent in socioeconomically disadvantaged communities and it is estimated that global infection could be as high as 370 million people. This paper explores current methods of strongyloidiasis treatment, which rely on administration of anthelminthic drugs. However these drugs cannot prevent reinfection and drug resistance has already been observed in veterinary models. This highlights the need for a combined approach for controlling Strongyloides that includes both clinical treatment and environmental control methods. Currently, nematicides are widely used to control plant parasites. The review suggests that due to the species' similarity and similar modes of action, these nematicides could also be used to control animal and human parasitic nematodes in the environment.

8.
Article in English | MEDLINE | ID: mdl-27213420

ABSTRACT

Strongyloidiasis is a disease caused by soil transmitted helminths of the Strongyloides genus. Currently, it is predominately described as a neglected tropical disease. However, this description is misleading as it focuses on the geographical location of the disease and not the primary consideration, which is the socioeconomic conditions and poor infrastructure found within endemic regions. This classification may result in misdiagnosis and mistreatment by physicians, but more importantly, it influences how the disease is fundamentally viewed. Strongyloidiasis must be first and foremost considered as a disease of disadvantage, to ensure the correct strategies and control measures are used to prevent infection. Changing how strongyloidiasis is perceived from a geographic and clinical issue to an environmental health issue represents the first step in identifying appropriate long term control measures. This includes emphasis on environmental health controls, such as better infrastructure, sanitation and living conditions. This review explores the global prevalence of strongyloidiasis in relation to its presence in subtropical, tropical and temperate climate zones with mild and cold winters, but also explores the corresponding socioeconomic conditions of these regions. The evidence shows that strongyloidiasis is primarily determined by the socioeconomic status of the communities rather than geographic or climatic conditions. It demonstrates that strongyloidiasis should no longer be referred to as a "tropical" disease but rather a disease of disadvantage. This philosophical shift will promote the development of correct control strategies for preventing this disease of disadvantage.


Subject(s)
Strongyloides stercoralis , Strongyloidiasis/economics , Strongyloidiasis/epidemiology , Animals , Humans , Prevalence , Social Class
SELECTION OF CITATIONS
SEARCH DETAIL
...